Source code for h2o.model.metrics_base

from model_base import ModelBase
from h2o.model.confusion_matrix import ConfusionMatrix

class MetricsBase(object):
[docs] """ A parent class to house common metrics available for the various Metrics types. The methods here are available acorss different model categories, and so appear here. """ def __init__(self, metric_json,on_train,on_valid,algo): self._metric_json = metric_json self._on_train = on_train # train and valid are not mutually exclusive -- could have a test. train and valid only make sense at model build time. self._on_valid = on_valid self._algo = algo def __repr__(self): self.show() return "" def show(self):
[docs] """ Display a short summary of the metrics. :return: None """ metric_type = self._metric_json['__meta']['schema_type'] types_w_glm = ['ModelMetricsRegressionGLM', 'ModelMetricsBinomialGLM'] types_w_clustering = ['ModelMetricsClustering'] types_w_mult = ['ModelMetricsMultinomial'] types_w_bin = ['ModelMetricsBinomial', 'ModelMetricsBinomialGLM'] types_w_r2 = ['ModelMetricsBinomial', 'ModelMetricsRegression'] + types_w_glm + types_w_mult types_w_logloss = types_w_bin + types_w_mult print print metric_type + ": " + self._algo reported_on = "** Reported on {} data. **" if self._on_train: print reported_on.format("train") elif self._on_valid: print reported_on.format("validation") else: print reported_on.format("test") print print "MSE: " + str(self.mse()) if metric_type in types_w_r2: print "R^2: " + str(self.r2()) if metric_type in types_w_logloss: print "LogLoss: " + str(self.logloss()) if metric_type in types_w_glm: print "Null degrees of freedom: " + str(self.null_degrees_of_freedom()) print "Residual degrees of freedom: " + str(self.residual_degrees_of_freedom()) print "Null deviance: " + str(self.null_deviance()) print "Residual deviance: " + str(self.residual_deviance()) print "AIC: " + str(self.aic()) if metric_type in types_w_bin: print "AUC: " + str(self.auc()) print "Gini: " + str(self.giniCoef()) self.confusion_matrix().show() self._metric_json["max_criteria_and_metric_scores"].show() if metric_type in types_w_mult: self.confusion_matrix().show() self._metric_json['hit_ratio_table'].show() if metric_type in types_w_clustering: print "Total Within Cluster Sum of Square Error: " + str(self.tot_withinss()) print "Total Sum of Square Error to Grand Mean: " + str(self.totss()) print "Between Cluster Sum of Square Error: " + str(self.betweenss()) self._metric_json['centroid_stats'].show() def r2(self):
[docs] """ :return: Retrieve the R^2 coefficient for this set of metrics """ return self._metric_json["r2"] def logloss(self):
[docs] """ :return: Retrieve the log loss for this set of metrics. """ return self._metric_json["logloss"] def auc(self):
[docs] """ :return: Retrieve the AUC for this set of metrics. """ return self._metric_json['AUC'] def aic(self):
[docs] """ :return: Retrieve the AIC for this set of metrics. """ return self._metric_json['AIC'] def giniCoef(self):
[docs] """ :return: Retrieve the Gini coefficeint for this set of metrics. """ return self._metric_json['Gini'] def mse(self):
[docs] """ :return: Retrieve the MSE for this set of metrics """ return self._metric_json['MSE'] def residual_deviance(self):
[docs] """ :return: the residual deviance if the model has residual deviance, or None if no residual deviance. """ if ModelBase._has(self._metric_json, "residual_deviance"): return self._metric_json["residual_deviance"] return None def residual_degrees_of_freedom(self):
[docs] """ :return: the residual dof if the model has residual deviance, or None if no residual dof. """ if ModelBase._has(self._metric_json, "residual_degrees_of_freedom"): return self._metric_json["residual_degrees_of_freedom"] return None def null_deviance(self):
[docs] """ :return: the null deviance if the model has residual deviance, or None if no null deviance. """ if ModelBase._has(self._metric_json, "null_deviance"): return self._metric_json["null_deviance"] return None def null_degrees_of_freedom(self):
[docs] """ :return: the null dof if the model has residual deviance, or None if no null dof. """ if ModelBase._has(self._metric_json, "null_degrees_of_freedom"): return self._metric_json["null_degrees_of_freedom"] return None class H2ORegressionModelMetrics(MetricsBase):
[docs] """ This class provides an API for inspecting the metrics returned by a regression model. It is possible to retrieve the R^2 (1 - MSE/variance) and MSE """ def __init__(self,metric_json,on_train=False,on_valid=False,algo=""): super(H2ORegressionModelMetrics, self).__init__(metric_json, on_train, on_valid, algo) class H2OClusteringModelMetrics(MetricsBase):
[docs] def __init__(self, metric_json, on_train=False, on_valid=False, algo=""): super(H2OClusteringModelMetrics, self).__init__(metric_json, on_train, on_valid, algo) def tot_withinss(self):
[docs] """ :return: the Total Within Cluster Sum-of-Square Error, or None if not present. """ if ModelBase._has(self._metric_json, "tot_withinss"): return self._metric_json["tot_withinss"] return None def totss(self):
[docs] """ :return: the Total Sum-of-Square Error to Grand Mean, or None if not present. """ if ModelBase._has(self._metric_json, "totss"): return self._metric_json["totss"] return None def betweenss(self):
[docs] """ :return: the Between Cluster Sum-of-Square Error, or None if not present. """ if ModelBase._has(self._metric_json, "betweenss"): return self._metric_json["betweenss"] return None class H2OMultinomialModelMetrics(MetricsBase):
[docs] def __init__(self, metric_json, on_train=False, on_valid=False, algo=""): super(H2OMultinomialModelMetrics, self).__init__(metric_json, on_train, on_valid,algo) def confusion_matrix(self):
[docs] """ Returns a confusion matrix based of H2O's default prediction threshold for a dataset """ return self._metric_json['cm']['table'] class H2OBinomialModelMetrics(MetricsBase):
[docs] """ This class is essentially an API for the AUC object. This class contains methods for inspecting the AUC for different criteria. To input the different criteria, use the static variable `criteria` """ def __init__(self, metric_json, on_train=False, on_valid=False, algo=""): """ Create a new Binomial Metrics object (essentially a wrapper around some json) :param metric_json: A blob of json holding all of the needed information :param on_train: Metrics built on training data (default is False) :param on_valid: Metrics built on validation data (default is False) :param algo: The algorithm the metrics are based off of (e.g. deeplearning, gbm, etc.) :return: A new H2OBinomialModelMetrics object. """ super(H2OBinomialModelMetrics, self).__init__(metric_json, on_train, on_valid, algo) def F1(self, thresholds=None):
[docs] """ :param thresholds: thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. :return: The F1 for the given set of thresholds. """ return self.metric("f1", thresholds=thresholds) def F2(self, thresholds=None):
[docs] """ :param thresholds: thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. :return: The F2 for this set of metrics and thresholds """ return self.metric("f2", thresholds=thresholds) def F0point5(self, thresholds=None):
[docs] """ :param thresholds: thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. :return: The F0point5 for this set of metrics and thresholds. """ return self.metric("f0point5", thresholds=thresholds) def accuracy(self, thresholds=None):
[docs] """ :param thresholds: thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. :return: The accuracy for this set of metrics and thresholds """ return self.metric("accuracy", thresholds=thresholds) def error(self, thresholds=None):
[docs] """ :param thresholds: thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. :return: The error for this set of metrics and thresholds. """ return 1 - self.metric("accuracy", thresholds=thresholds) def precision(self, thresholds=None):
[docs] """ :param thresholds: thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. :return: The precision for this set of metrics and thresholds. """ return self.metric("precision", thresholds=thresholds) def tpr(self, thresholds=None):
[docs] """ :param thresholds: thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. :return: The True Postive Rate """ return self.metric("tpr", thresholds=thresholds) def tnr(self, thresholds=None):
[docs] """ :param thresholds: thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. :return: The True Negative Rate """ return self.metric("tnr", thresholds=thresholds) def fnr(self, thresholds=None):
[docs] """ :param thresholds: thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. :return: The False Negative Rate """ return self.metric("fnr", thresholds=thresholds) def fpr(self, thresholds=None):
[docs] """ :param thresholds: thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. :return: The False Positive Rate """ return self.metric("fpr", thresholds=thresholds) def recall(self, thresholds=None):
[docs] """ :param thresholds: thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. :return: Recall for this set of metrics and thresholds """ return self.metric("tpr", thresholds=thresholds) def sensitivity(self, thresholds=None):
[docs] """ :param thresholds: thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. :return: Sensitivity or True Positive Rate for this set of metrics and thresholds """ return self.metric("tpr", thresholds=thresholds) def fallout(self, thresholds=None):
[docs] """ :param thresholds: thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. :return: The fallout or False Positive Rate for this set of metrics and thresholds """ return self.metric("fpr", thresholds=thresholds) def missrate(self, thresholds=None):
[docs] """ :param thresholds: thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. :return: THe missrate or False Negative Rate. """ return self.metric("fnr", thresholds=thresholds) def specificity(self, thresholds=None):
[docs] """ :param thresholds: thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. :return: The specificity or True Negative Rate. """ return self.metric("tnr", thresholds=thresholds) def mcc(self, thresholds=None):
[docs] """ :param thresholds: thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. :return: The absolute MCC (a value between 0 and 1, 0 being totally dissimilar, 1 being identical) """ return self.metric("absolute_MCC", thresholds=thresholds) def max_per_class_error(self, thresholds=None):
[docs] """ :param thresholds: thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. :return: Return 1 - min_per_class_accuracy """ return 1-self.metric("min_per_class_accuracy", thresholds=thresholds) def metric(self, metric, thresholds=None):
[docs] """ :param metric: The desired metric :param thresholds: thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. :return: The set of metrics for the list of thresholds """ if not thresholds: thresholds=[self.find_threshold_by_max_metric(metric)] if not isinstance(thresholds,list): raise ValueError("thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99])") thresh2d = self._metric_json['thresholds_and_metric_scores'] midx = thresh2d.col_header.index(metric) metrics = [] for t in thresholds: idx = self.find_idx_by_threshold(t) row = thresh2d.cell_values[idx] metrics.append([t,row[midx]]) return metrics def confusion_matrix(self, metrics=None, thresholds=None):
[docs] """ Get the confusion matrix for the specified metric :param metrics: A string (or list of strings) in {"min_per_class_accuracy", "absolute_MCC", "tnr", "fnr", "fpr", "tpr", "precision", "accuracy", "f0point5", "f2", "f1"} :param thresholds: A value (or list of values) between 0 and 1 :return: a list of ConfusionMatrix objects (if there are more than one to return), or a single ConfusionMatrix (if there is only one) """ # make lists out of metrics and thresholds arguments if metrics is None and thresholds is None: metrics = ["f1"] if isinstance(metrics, list): metrics_list = metrics elif metrics is None: metrics_list = [] else: metrics_list = [metrics] if isinstance(thresholds, list): thresholds_list = thresholds elif thresholds is None: thresholds_list = [] else: thresholds_list = [thresholds] # error check the metrics_list and thresholds_list if not all(isinstance(t, (int, float, long)) for t in thresholds_list) or \ not all(t >= 0 or t <= 1 for t in thresholds_list): raise ValueError("All thresholds must be numbers between 0 and 1 (inclusive).") if not all(m in ["min_per_class_accuracy", "absolute_MCC", "tnr", "fnr", "fpr", "tpr", "precision", "accuracy", "f0point5", "f2", "f1"] for m in metrics_list): raise ValueError("The only allowable metrics are min_per_class_accuracy, absolute_MCC, tnr, fnr, fpr, tpr, " "precision, accuracy, f0point5, f2, f1") # make one big list that combines the thresholds and metric-thresholds metrics_thresholds = [self.find_threshold_by_max_metric(m) for m in metrics_list] for mt in metrics_thresholds: thresholds_list.append(mt) thresh2d = self._metric_json['thresholds_and_metric_scores'] actual_thresholds = [float(e[0]) for i,e in enumerate(thresh2d.cell_values)] tidx = thresh2d.col_header.index('tps') fidx = thresh2d.col_header.index('fps') p = self._metric_json['max_criteria_and_metric_scores'].cell_values[tidx-1][2] n = self._metric_json['max_criteria_and_metric_scores'].cell_values[fidx-1][2] cms = [] for t in thresholds_list: idx = self.find_idx_by_threshold(t) row = thresh2d.cell_values[idx] tps = row[tidx] fps = row[fidx] c0 = float("nan") if isinstance(n, str) or isinstance(fps, str) else n - fps c1 = float("nan") if isinstance(p, str) or isinstance(tps, str) else p - tps fps = float("nan") if isinstance(fps,str) else fps tps = float("nan") if isinstance(tps,str) else tps if t in metrics_thresholds: m = metrics_list[metrics_thresholds.index(t)] table_header = "Confusion Matrix (Act/Pred) for max " + m + " @ threshold = " + str(actual_thresholds[idx]) else: table_header = "Confusion Matrix (Act/Pred) @ threshold = " + str(actual_thresholds[idx]) cms.append(ConfusionMatrix(cm=[[c0,fps],[c1,tps]], domains=self._metric_json['domain'], table_header=table_header)) if len(cms) == 1: return cms[0] else: return cms def find_threshold_by_max_metric(self,metric):
[docs] """ :param metric: A string in {"min_per_class_accuracy", "absolute_MCC", "tnr", "fnr", "fpr", "tpr", "precision", "accuracy", "f0point5", "f2", "f1"} :return: the threshold at which the given metric is maximum. """ crit2d = self._metric_json['max_criteria_and_metric_scores'] for e in crit2d.cell_values: if e[0]==metric: return e[1] raise ValueError("No metric "+str(metric)) def find_idx_by_threshold(self,threshold):
[docs] """ Retrieve the index in this metric's threshold list at which the given threshold is located. :param threshold: Find the index of this input threshold. :return: Return the index or throw a ValueError if no such index can be found. """ if not isinstance(threshold,float): raise ValueError("Expected a float but got a "+type(threshold)) thresh2d = self._metric_json['thresholds_and_metric_scores'] for i,e in enumerate(thresh2d.cell_values): t = float(e[0]) if abs(t-threshold) < 0.00000001 * max(t,threshold): return i if threshold >= 0 and threshold <= 1: thresholds = [float(e[0]) for i,e in enumerate(thresh2d.cell_values)] threshold_diffs = [abs(t - threshold) for t in thresholds] closest_idx = threshold_diffs.index(min(threshold_diffs)) closest_threshold = thresholds[closest_idx] print "Could not find exact threshold {0}; using closest threshold found {1}." \ .format(threshold, closest_threshold) return closest_idx raise ValueError("Threshold must be between 0 and 1, but got {0} ".format(threshold)) class H2OAutoEncoderModelMetrics(MetricsBase):
[docs] def __init__(self, metric_json, on_train=False, on_valid=False, algo=""): super(H2OAutoEncoderModelMetrics, self).__init__(metric_json, on_train, on_valid,algo)