H20 DEVELOPER COOKBOOK

Preface

H20 is an in-memory engine for predictive analytics and machine learning.

Discuss the differences between ValueArray and Fluid Vector here.

1 GETTING STARTED FROM AN IDE

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

CLONING H20 FROM GITHUB

DOWNLOADING JAVA

IMPORTING THE H20 PROJECT INTO ECLIPSE
COMPILING H20 IN ECLIPSE

STARTING H20 IN ECLIPSE

IMPORTING THE H20 PROJECT INTO INTELLIJ IDEA
COMPILING H20 IN INTELLIJ IDEA

STARTING H20 IN INTELLI] IDEA

NN NNNNNN N

2 GETTING STARTED FROM THE COMMAND LINE 8
2.1 COMPILING H20 FROM THE COMMAND LINE 8
2.2 RUNNING H20 FROM THE COMMAND LINE 8
2.3 RUNNING A MULTI-NODE H20 CLUSTER FROM THE COMMAND LINE 8
3 READING DATA 9
3.1 READING A CSV FILE FROM LOCAL DISK 9
3.2 READING A CSV FILE FROM HDFS 9
3.3 READING A CSV FILE FROM S3 9
3.4 READING A DIRECTORY OF CSV FILES FROM LOCAL DISK 9
3.5 READING A DIRECTORY OF CSV FILES FROM HDFS 9
3.6 READING A DIRECTORY OF CSV FILES FROM S3 9
4 INTRODUCTION TO REPRESENTATION OF DATA 10
4.1 ELEMENT 10
4.1.1 DOUBLE ELEMENTS 10
4.1.2 LONGELEMENTS 10
4.1.3 ENUM (AKA CATEGORICAL) ELEMENTS 10
4.1.4 MISSING (AKA NA) VALUES 10
4.1.5 NOT-A-NUMBER (AKA NAN) VALUES 10
4.1.6 INFINITY VALUES 10
4.2 CHUNK 10
4.2.1 READING A DOUBLE ELEMENT FROM A CHUNK 10
4.2.2 READING A LONG ELEMENT FROM A CHUNK 10
4.2.3 UPDATING A DOUBLE ELEMENT TO A CHUNK 10
4.2.4 UPDATING A LONG ELEMENT TO A CHUNK 10
4.3 VEC 10
4.3.1 READING AN ELEMENT FROM A VEC 11
4.3.2 UPDATING AN ELEMENT TO A VEC 11
4.3.3 TESTING WHETHER A VEC OF INTEGERS IS AN ENUM (AKA CATEGORICAL) OR NOT 11
4.3.4 PRINTING THE LIST OF DOMAINS OF AN ENUM VEC (AKA LEVELS OF A CATEGORICAL VEC) 11
4.3.5 UPDATING A VEC ELEMENT WITH AN ENUM VALUE THAT HAS NEVER BEEN USED BEFORE 11
4.3.6 ACCESSING VEC STATS THAT ARE COMPUTED AUTOMATICALLY (LIKE MIN, MAX) 11
4.4 FRAME 11
4.4.1 ACCESSING A VEC FROM A FRAME 11
4.4.2 PRINTING ALL COLUMN (AKA VEC) NAMES IN A FRAME 11
4.4.3 ADDING AN EXISTING VEC TO A FRAME 11
4.4.4 REMOVING A VEC FROM A FRAME 11

4.4.5 CREATING A NEW FRAME WITH A SUBSET OF VECS FROM AN EXISTING FRAME 11
4.4.6 REMOVING ALL FRAME REFERENCES TO A VEC AND RECLAIMING ITS MEMORY 11
4.4.7 CREATING A NEW DOUBLE VEC FROM NOTHING AND ADDING IT TO A FRAME 11
4.4.8 CREATING A NEW LONG VEC FROM NOTHING AND ADDING IT TO A FRAME 11
4.49 CREATING A NEW ENUM VEC FROM NOTHING AND ADDING IT TO A FRAME 11
5 SHARING DATA ACROSS NODES 12
5.1 DKV (DISTRIBUTED KEY/VALUE STORE) 12
5.1.1 READING A VALUE FROM THE DKV 12
5.1.2 WRITING A NEW VALUE TO THE DKV 12
5.1.3 UPDATING A VALUE IN THE DKV 12
5.1.4 REMOVING A VALUE FROM THE DKV 12
5.1.5 WRITING MULTIPLE VALUES TO THE DKV 12
5.1.6 UPDATING MULTIPLE VALUES IN THE DKV 12
5.1.7 REMOVING MULTIPLE VALUES FROM THE DKV 12
5.2 UKV (USER-LEVEL KEY/VALUE STORE) 12
5.2.1 ADDING COMPOUND OBJECTS TO THE UKV 12
5.2.2 REMOVING COMPOUND OBJECTS FROM THE UKV 12
5.2.3 LOOKING AT UKV OBJECTS USING THE WEB Ul 12
5.3 VECS AND FRAMES 12
5.3.1 READING A VALUE UPDATED BY A DIFFERENT NODE 12
5.4 CHUNKS AND DATA PARALLELISM 12
5.4.1 OBSERVING HOW CHUNK ARRAYS ARE THE BASIC UNIT OF PARALLELISM 12
5.4.2 OBSERVING HOW CHUNK ARRAYS GET SPRAYED ACROSS A CLUSTER FOR SMALL DATA 12
5.4.3 OBSERVING HOW CHUNK ARRAYS GET SPRAYED ACROSS A CLUSTER FOR BIG DATA 12
6 CLUSTERS 13
6.1 KNOWING WHEN A CLUSTER IS READY FOR USE 13
6.2 CHECKING CLUSTER HEALTH 13
7 WORKING WITH DATA THAT EXCEEDS THE SIZE OF MEMORY 14
7.1 MANAGING THE LOCATION OF TEMPORARY FILES BY SETTING ICE_ROOT 14
7.2 READING A HUGE CSV FILE 14
8 OBJECT SERIALIZATION 15
8.1 FREEZABLE AND ICED 15
8.1.1 DEFINING A NEW ICED OBJECT 15
8.1.2 SENDING AN ICED OBJECT ACROSS THE NETWORK 15
9 TASKS 16
9.1 DREMOTETASK 16
9.1.1 RUNNING A PIECE OF JAVA CODE ON ALL H20 NODES 16
9.2 MRTASK2 16
9.2.1 WRITING A NEW MRTASK2 TASK TO SUM THE VALUES OF A COLUMN 16
9.2.2 RETURNING THE VALUE OF A MRTASK2 TASK AS A MEMBER OF AN ICED OBJECT 16
9.2.3 RETURNING THE VALUE OF A MRTASK2 TASK BY ADDING NEW VECS (AKA COLUMNS) TO A FRAME 16

17

10 JOBS

10.1 CREATING A NEW JOB 17
10.2 STARTINGA JOB 17
10.3 MONITORING A JOB 17
11 SCALA AND H20 18
11.1 GETTING STARTED WITH SHALALA 18
11.2 READING DATA IN FROM SCALA 18
11.3 WRITING SCALA SCRIPTS FOR H20 18
11.4 WRITING A NEW MRTASK2 TASK IN SCALA 18
11.5 CALLING JAVA MRTASK2 TASKS FROM SCALA 18
11.6 RUNNING SCALA CODE IN A MULTI-NODE H20 CLUSTER 18
12 REST API 19
12.1 CREATING A NEW REST API ENDPOINT 19
13 LOGGING 20
13.1 WRITING NEW LOG STATEMENTS 20
13.2 FINDING LOG FILES 20
13.3 CONFIGURING A CUSTOM LOGGING SETUP 20
14 USING H20 AS A DEPENDENCY FOR A NEW PROJECT 21
14.1 COMPILING YOUR PROJECT WITH H20 AS A DEPENDENCY 21
14.2 REGISTERING A NEW REST API ENDPOINT WITH H20 21
14.3 RUNNING AN H20 CLUSTER WITH A NEW REST ENDPOINT FROM INTELLIJ IDEA 21
14.4 RUNNING AN H20 CLUSTER WITH A NEW REST ENDPOINT FROM THE COMMAND LINE 21
15 EMBEDDING H20 22
15.1 RUNNING H20 INSIDE A HADOOP MAP TASK 22
16 TESTING 23
16.1 RUNNING JUNIT TESTS FROM THE COMMAND LINE 23
16.2 RUNNING JUNIT TESTS FROM AN IDE 23
16.3 RUNNING ONE RUNIT TEST FROM THE COMMAND LINE 23
16.4 RUNNING ONE RUNIT TEST FROM RSTUDIO 23
16.5 RUNNING ALL THE RUNIT TESTS FROM THE COMMAND LINE 23
16.6 RUNNING ONE PYTHON TEST FROM THE COMMAND LINE 23
16.7 RUNNING ALL THE PYTHON TESTS FROM THE COMMAND LINE 23
16.8 RUNNING H20 CRAN PACKAGE EXAMPLES FROM THE COMMAND LINE 23
16.9 ADDING A JUNIT TEST 23
16.10 ADDING AN RUNIT TEST 23
16.11 ADDING A PYTHON TEST 23
17 COMMON PITFALLS 24
17.1 FREQUENTLY HIT ASSERTIONS BY NEW H20 DEVELOPERS 24
17.1.1 MISSING CHUNKS 24
17.1.2 LEAKINGKEYS 24
17.2 FREQUENTLY MADE PROGRAMMING MISTAKES 24

17.2.1 FAILURE TO BLOCK (AKA WAIT)

24

17.2.2 CALLING AN MRTASK2 FROM INSIDE ANOTHER MRTASK2 24
17.2.3 RUNNING OUT OF FORK/JOIN THREADS 24
18 THINGS H20 DOES NOT SUPPORT 25
18.1 ROW NAMES 25
18.2 UNIQUE PER-ROW STRINGS FOR MANY ROWS 25
18.3 HIGH AVAILABILITY (HA) 25

26

19 GLOSSARY

1 Getting Started from an IDE

11
1.2
1.3
1.4
1.5
1.6
1.7

1.8

Cloning H20 from Github

Downloading Java

Importing the H20 project into Eclipse
Compiling H20 in Eclipse

Starting H20 in Eclipse

Importing the H20 project into Intelli) IDEA
Compiling H20 in IntelliJ IDEA

Starting H20 in Intelli) IDEA

2 Getting Started from the Command Line
2.1 Compiling H20 from the command line
2.2 Running H20 from the command line

2.3 Running a multi-node H20 cluster from the command line

3 Reading Data

3.1
3.2
3.3
34
3.5
3.6

Reading a CSV file from local disk

Reading a CSV file from HDFS

Reading a CSV file from S3

Reading a directory of CSV files from local disk
Reading a directory of CSV files from HDFS

Reading a directory of CSV files from S3

4 Introduction to Representation of Data

Data in H2O is referenced through a Frame. Frames are loosely analogous to Data Frames in R,
although in H20O the actual data is stored in vectors (a Vec) rather than in the Frame itself. A
Vec may be referenced by more than one Frame. Each Frame is composed of one or more Vecs.
Each Vec is composed of one or more Chunks. Each Chunk is composed on one or more
Elements.

4.1 Element

Some text here about Elements.

4.1.1 Double elements

4.1.2 Long elements

4.1.3 Enum (aka Categorical) elements
4.1.4 Missing (aka NA) values

4.1.5 Not-a-Number (aka NaN) values
4.1.6 Infinity values

4.2 Chunk

Some text here about Chunks

4.2.1 Reading a double element from a Chunk
4.2.2 Reading a long element from a Chunk
4.2.3 Updating a double element to a Chunk
4.2.4 Updating a long element to a Chunk

4.3 Vec

Some text here about Vecs

10

4.3.1 Reading an element from a Vec

4.3.2 Updating an element to a Vec

4.3.3 Testing whether a Vec of integers is an Enum (aka Categorical) or not

4.3.4 Printing the list of Domains of an Enum Vec (aka Levels of a Categorical Vec)
4.3.5 Updating a Vec element with an Enum value that has never been used before
4.3.6 Accessing Vec stats that are computed automatically (like min, max)

4.4 Frame

Some text here about Frames

4.4.1 Accessing a Vec from a Frame

4.4.2 Printing all column (aka Vec) names in a Frame

4.4.3 Adding an existing Vec to a Frame

4.4.4 Removing a Vec from a Frame

4.4.5 Creating a new Frame with a subset of Vecs from an existing Frame
4.4.6 Removing all Frame references to a Vec and reclaiming its memory
4.4.7 Creating a new double Vec from nothing and adding it to a Frame
4.4.8 Creating a new long Vec from nothing and adding it to a Frame

4.4.9 Creating a new Enum Vec from nothing and adding it to a Frame

5 Sharing Data Across Nodes

5.1 DKV (Distributed Key/Value Store)

DKYV stands for Distributed Key/Value store. The DKV is the high-performance atomic

distributed store that provides the clustering support for data in H20.
5.1.1 Reading a value from the DKV

5.1.2 Writing a new value to the DKV

5.1.3 Updating a value in the DKV

5.1.4 Removing a value from the DKV

5.1.5 Writing multiple values to the DKV

5.1.6 Updating multiple values in the DKV

5.1.7 Removing multiple values from the DKV

5.2 UKV (User-level Key/Value Store)

The UKYV is an abstraction on top of the DKV.

5.2.1 Adding compound objects to the UKV

5.2.2 Removing compound objects from the UKV

5.2.3 Looking at UKV objects using the Web Ul

5.3 Vecs and Frames

5.3.1 Reading a value updated by a different node

5.4 Chunks and Data Parallelism

5.4.1 Observing how Chunk arrays are the basic unit of parallelism

5.4.2 Observing how Chunk arrays get sprayed across a Cluster for small data

5.4.3 Observing how Chunk arrays get sprayed across a Cluster for big data

12

6 Clusters
6.1 Knowing when a cluster is ready for use

6.2 Checking cluster health

13

7 Working with Data that exceeds the size of Memory
7.1 Managing the location of temporary files by setting ICE_ROOT

7.2 Reading a huge CSV file

14

8 Object Serialization
8.1 Freezable and Iced
8.1.1 Defining a new Iced object

8.1.2 Sending an Iced object across the network

15

9 Tasks

9.1 DRemoteTask

9.1.1 Running a piece of Java code on all H20 nodes

9.2 MRTask2

9.2.1 Writing a new MRTask2 task to sum the values of a column

9.2.2 Returning the value of a MRTask2 task as a member of an Iced object

9.2.3 Returning the value of a MRTask2 task by adding new Vecs (aka columns) to a Frame

16

10 Jobs

A Job is a major piece of work that gets added to the Jobs list and is visible in the Jobs Web UI
page. A Job is generally reserved for things that produce an output you would be interested
keeping around (a model, for example). Top-level algorithms like Random Forest are
implemented as a Job.

10.1 Creating a new Job

10.2 Starting a Job

10.3 Monitoring a Job

17

11 Scala and H20

11.1 Getting started with Shalala

11.2 Reading data in from Scala

11.3 Writing Scala scripts for H20

11.4 Writing a new MRTask2 task in Scala
11.5 Calling Java MRTask2 tasks from Scala

11.6 Running Scala code in a multi-node H20 cluster

18

12 REST API

12.1 Creating a new REST API endpoint

19

13 Logging
13.1 Writing new log statements
13.2 Finding log files

13.3 Configuring a custom logging setup

20

14 Using H20 as a Dependency for a new Project

14.1 Compiling your project with H20 as a dependency

14.2 Registering a new REST API endpoint with H20

14.3 Running an H20 cluster with a new REST endpoint from Intelli) IDEA

14.4 Running an H20 cluster with a new REST endpoint from the command line

21

15 Embedding H20

15.1 Running H20 inside a Hadoop map task

22

16 Testing

16.1 Running JUnit tests from the command line

16.2 Running JUnit tests from an IDE

16.3 Running one RUnit test from the command line

16.4 Running one RUnit test from RStudio

16.5 Running all the RUnit tests from the command line
16.6 Running one Python test from the command line
16.7 Running all the Python tests from the command line
16.8 Running H20 CRAN package examples from the command line
16.9 Adding a JUnit test

16.10 Adding an RUnit test

16.11 Adding a Python test

23

17 Common Pitfalls

17.1 Frequently hit assertions by new H20 developers
17.1.1 Missing chunks

17.1.2 Leaking keys

17.2 Frequently made programming mistakes

17.2.1 Failure to block (aka wait)

17.2.2 Calling an MRTask2 from inside another MRTask2

17.2.3 Running out of Fork/Join threads

24

18 Things H20 does not Support

It’s worth pointing out the following list of items that are available in some other popular
languages and frameworks. Some of these are in the H20 roadmap and some are not a fit for
H20.

18.1 Row names

Unlike R Data Frames, H20 does not support naming individual rows. Allowing this is one
factor that inhibits the R runtime from scaling well. Don’t expect H20 to ever support this.

18.2 Unique per-row strings for many rows

H20 currently turns columns with small numbers of unique strings into an Enum, and turns
columns with large numbers of unique strings into N/As.

In the future, H20 will be able to read in columns with large numbers of strings and treat a
separate “String” datatype as a top-level datatype. These will be unusable for modeling
purposes, but flow through to be able to print the value as an output. For some applications, this
may serve as an adequate substitute for row names.

18.3 High availability (HA)

H2O0 is currently vulnerable to single-node failures rendering the entire cluster inoperable. Since
H20 has an In-Memory architecture, the response to this is to manually kill and restart the
cluster and any jobs that were in progress. Proper HA support is on the roadmap, but a (perhaps
sufficient) step on the way there is the ability to checkpoint and restart model building.

25

19 Glossary

Categorical

Cluster (of H20 nodes)
Domain

DKV

DRemoteTask

Enum

Fluid Vector (FV)
Freezable

Future

Fork/Join
H20CountedCompleter
Iced

In-Core

In-Memory

Job

Key

Level

MRTask2

Node (in a Cluster)
Out-of-Core

REST API endpoint
UKV

ValueArray (VA or sometimes just Array)
Vector Group

26

