Metrics in H2O¶
Metrics In H2O¶
- class h2o.model.metrics_base.H2OAutoEncoderModelMetrics(metric_json, on_train=False, on_valid=False, algo='')[source]¶
- class h2o.model.metrics_base.H2OBinomialModelMetrics(metric_json, on_train=False, on_valid=False, algo='')[source]¶
Bases: h2o.model.metrics_base.MetricsBase
This class is essentially an API for the AUC object. This class contains methods for inspecting the AUC for different criteria. To input the different criteria, use the static variable criteria
- F0point5(thresholds=None)[source]¶
Parameters: thresholds – thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. Returns: The F0point5 for this set of metrics and thresholds.
- F1(thresholds=None)[source]¶
Parameters: thresholds – thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. Returns: The F1 for the given set of thresholds.
- F2(thresholds=None)[source]¶
Parameters: thresholds – thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. Returns: The F2 for this set of metrics and thresholds
- accuracy(thresholds=None)[source]¶
Parameters: thresholds – thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. Returns: The accuracy for this set of metrics and thresholds
- confusion_matrix(metrics=None, thresholds=None)[source]¶
Get the confusion matrix for the specified metric
Parameters: - metrics – A string (or list of strings) in {“min_per_class_accuracy”, “absolute_MCC”, “tnr”, “fnr”, “fpr”, “tpr”, “precision”, “accuracy”, “f0point5”, “f2”, “f1”}
- thresholds – A value (or list of values) between 0 and 1
Returns: a list of ConfusionMatrix objects (if there are more than one to return), or a single ConfusionMatrix (if there is only one)
- error(thresholds=None)[source]¶
Parameters: thresholds – thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. Returns: The error for this set of metrics and thresholds.
- fallout(thresholds=None)[source]¶
Parameters: thresholds – thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. Returns: The fallout or False Positive Rate for this set of metrics and thresholds
- find_idx_by_threshold(threshold)[source]¶
Retrieve the index in this metric’s threshold list at which the given threshold is located.
Parameters: threshold – Find the index of this input threshold. Returns: Return the index or throw a ValueError if no such index can be found.
- find_threshold_by_max_metric(metric)[source]¶
Parameters: metric – A string in {“min_per_class_accuracy”, “absolute_MCC”, “precision”, “accuracy”, “f0point5”, “f2”, “f1”} Returns: the threshold at which the given metric is maximum.
- fnr(thresholds=None)[source]¶
Parameters: thresholds – thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. Returns: The False Negative Rate
- fpr(thresholds=None)[source]¶
Parameters: thresholds – thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. Returns: The False Positive Rate
- max_per_class_error(thresholds=None)[source]¶
Parameters: thresholds – thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. Returns: Return 1 - min_per_class_accuracy
- mcc(thresholds=None)[source]¶
Parameters: thresholds – thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. Returns: The absolute MCC (a value between 0 and 1, 0 being totally dissimilar, 1 being identical)
- metric(metric, thresholds=None)[source]¶
Parameters: - metric – The desired metric
- thresholds – thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used.
Returns: The set of metrics for the list of thresholds
- missrate(thresholds=None)[source]¶
Parameters: thresholds – thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. Returns: THe missrate or False Negative Rate.
- plot(type='roc', **kwargs)[source]¶
Produce the desired metric plot :param type: the type of metric plot (currently, only ROC supported) :param show: if False, the plot is not shown. matplotlib show method is blocking. :return: None
- precision(thresholds=None)[source]¶
Parameters: thresholds – thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. Returns: The precision for this set of metrics and thresholds.
- recall(thresholds=None)[source]¶
Parameters: thresholds – thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. Returns: Recall for this set of metrics and thresholds
- sensitivity(thresholds=None)[source]¶
Parameters: thresholds – thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. Returns: Sensitivity or True Positive Rate for this set of metrics and thresholds
- specificity(thresholds=None)[source]¶
Parameters: thresholds – thresholds parameter must be a list (i.e. [0.01, 0.5, 0.99]). If None, then the thresholds in this set of metrics will be used. Returns: The specificity or True Negative Rate.
- class h2o.model.metrics_base.H2OClusteringModelMetrics(metric_json, on_train=False, on_valid=False, algo='')[source]¶
- class h2o.model.metrics_base.H2ODimReductionModelMetrics(metric_json, on_train=False, on_valid=False, algo='')[source]¶
- class h2o.model.metrics_base.H2OMultinomialModelMetrics(metric_json, on_train=False, on_valid=False, algo='')[source]¶
- class h2o.model.metrics_base.H2ORegressionModelMetrics(metric_json, on_train=False, on_valid=False, algo='')[source]¶
Bases: h2o.model.metrics_base.MetricsBase
This class provides an API for inspecting the metrics returned by a regression model.
It is possible to retrieve the R^2 (1 - MSE/variance) and MSE
- class h2o.model.metrics_base.MetricsBase(metric_json, on_train, on_valid, algo)[source]¶
Bases: object
A parent class to house common metrics available for the various Metrics types.
The methods here are available acorss different model categories, and so appear here.
- null_degrees_of_freedom()[source]¶
Returns: the null dof if the model has residual deviance, or None if no null dof.
- null_deviance()[source]¶
Returns: the null deviance if the model has residual deviance, or None if no null deviance.
- residual_degrees_of_freedom()[source]¶
Returns: the residual dof if the model has residual deviance, or None if no residual dof.