
Package ’h2o’
March 5, 2014

R topics documented:
h2o-package . 1
apply . 2
as.data.frame.H2OParsedData . 3
as.factor . 4
as.h2o . 5
colnames . 6
Extremes . 6
h2o.anyFactor . 7
h2o.assign . 8
h2o.clusterInfo . 9
h2o.clusterStatus . 9
h2o.confusionMatrix . 10
h2o.cut . 11
h2o.downloadAllLogs . 12
h2o.downloadCSV . 13
h2o.exportHDFS . 14
h2o.gbm . 14
h2o.glm . 16
h2o.importFile . 18
h2o.importFolder . 20
h2o.importHDFS . 22
h2o.importURL . 23
h2o.init . 25
h2o.kmeans . 26
h2o.logAndEcho . 28
h2o.ls . 29
h2o.nn . 29
h2o.parseRaw . 31
h2o.pcr . 32
h2o.prcomp . 34
h2o.predict . 35
h2o.randomForest . 36
h2o.rm . 38

1

2 R topics documented:

h2o.runif . 39
h2o.shutdown . 40
h2o.table . 41
h2o.uploadFile . 42
h2o.__changeLogPath . 43
h2o.__clearLogs . 44
h2o.__getLogPath . 45
h2o.__openLog . 45
h2o.__startLogging . 46
h2o.__stopLogging . 47
H2OClient-class . 47
H2ODRFGrid-class . 48
H2ODRFModel-class . 49
H2OGBMGrid-class . 50
H2OGBMModel-class . 51
H2OGLMGrid-class . 52
H2OGLMGridVA-class . 53
H2OGLMModel-class . 54
H2OGLMModelVA-class . 55
H2OGrid-class . 56
H2OGridVA-class . 56
H2OKMeansGrid-class . 57
H2OKMeansModel-class . 58
H2OKMeansModelVA-class . 59
H2OModel-class . 60
H2OModelVA-class . 60
H2ONNGrid-class . 61
H2ONNModel-class . 62
H2OParsedData-class . 63
H2OParsedDataVA-class . 66
H2OPCAModel-class . 67
H2ORawData-class . 68
H2ORawDataVA-class . 68
H2ORFModelVA-class . 69
head . 70
ifelse . 71
is.factor . 72
levels . 72
mean.H2OParsedData . 73
nrow . 74
quantile.H2OParsedData . 74
screeplot.H2OPCAModel . 75
sd . 76
str . 77
sum . 77
summary . 78
summary.H2OPCAModel . 79

h2o-package 3

h2o-package H2O R Interface

Description

This is a package for running H2O via its REST API from within R. To communicate with a H2O
instance, the version of the R package must match the version of H2O. When connecting to a new
H2O cluster, it is necessary to re-run the initializer.

Details

Package: h2o
Type: Package
Version: 2.2.1.3
Date: 2013-12-12
License: Apache License (== 2.0)
Depends: R (>= 2.13.0), RCurl, rjson, statmod, tools, methods, utils

This package allows the user to run basic H2O commands using R commands. In order to use it,
you must first have H2O running (See How to Start H2O). To run H2O on your local machine, call
h2o.init without any arguments, and H2O will be automatically launched on http://127.0.0.1:
54321, where the IP is "127.0.0.1" and the port is 54321. If H2O is running on a cluster, you must
provide the IP and port of the remote machine as arguments to the h2o.init() call.

H2O supports a number of standard statistical models, such as GLM, K-means, and Random Forest
classification. For example, to run GLM, call h2o.glm with the H2O parsed data and parameters
(response variable, error distribution, etc...) as arguments. (The operation will be done on the server
associated with the data object where H2O is running, not within the R environment).

Note that no actual data is stored in the R workspace; and no actual work is carried out by R. R only
saves the named objects, which uniquely identify the data set, model, etc on the server. When the
user makes a request, R queries the server via the REST API, which returns a JSON file with the
relevant information that R then displays in the console.

Author(s)

Anqi Fu, Tom Kraljevic and Petr Maj, with contributions from the 0xdata team

Maintainer: Anqi Fu <anqi@0xdata.com>

References

• 0xdata Homepage

• H2O Documentation

• H2O on Github

http://docs.0xdata.com/newuser/quickstart_jar.html
http://127.0.0.1:54321
http://127.0.0.1:54321
http://www.0xdata.com
http://docs.0xdata.com
https://github.com/0xdata/h2o

4 apply

Examples

Check connection with H2O and ensure local H2O R package matches server version.
Optionally, ask for startH2O to start H2O if it’s not already running.
Note that for startH2O to work, the IP must be 127.0.0.1 or localhost with port 54321.
library(h2o)
localH2O = h2o.init(ip = "127.0.0.1", port = 54321, startH2O = TRUE)

Import iris dataset into H2O and print summary
irisPath = system.file("extdata", "iris.csv", package = "h2o")
iris.hex = h2o.importFile(localH2O, path = irisPath, key = "iris.hex")
summary(iris.hex)

Attach H2O R package and run GLM demo
??h2o
demo(package = "h2o")
demo(h2o.glm)

Shutdown local H2O instance when finished
h2o.shutdown(localH2O)

apply Applies a function over an H2O parsed data object.

Description

Applies a function over an H2O parsed data object (an array).

Usage

apply(X, MARGIN, FUN, ...)

Arguments

X An H2OParsedData object.

MARGIN The margin along wich the function should be applied

FUN The function to be applied by H2O.

... Optional arguments to FUN. (Currently unimplemented).

Value

Produces a new H2OParsedData of the output of the applied function. The output is stored in H2O
so that it can be used in subsequent H2O processes.

as.data.frame.H2OParsedData 5

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
irisPath = system.file("extdata", "iris.csv", package="h2o")
iris.hex = h2o.importFile(localH2O, path = irisPath, key = "iris.hex")
summary(apply(iris.hex, 1, sum))
h2o.shutdown(localH2O)

as.data.frame.H2OParsedData

Converts a parsed H2O object to a data frame.

Description

Convert an H2OParsedData object to a data frame, which allows subsequent data frame operations
within the R environment.

Usage

S3 method for class ’H2OParsedData’
as.data.frame(x, ...)

Arguments

x An H2OParsedData object.

... Additional arguments to be passed to or from methods.

Value

Returns a data frame in the R environment. Note that this call establishes the data set in the R
environment, and subsequent operations on the data frame take place within R, not H2O. When
data are large, users may experience

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
prosPath = system.file("extdata", "prostate.csv", package="h2o")
prostate.hex = h2o.importFile(localH2O, path = prosPath)
prostate.data.frame <- as.data.frame(prostate.hex)
summary(prostate.data.frame)
head(prostate.data.frame)
h2o.shutdown(localH2O)

6 as.h2o

as.factor Converts a column from numeric to factor

Description

Specify a column type to be factor (also called categorical or enumerative), rather than numeric.

Usage

as.factor(x)

Arguments

x A column in an object of class H2OParsedData, or data frame.

Value

Returns the original object of class H2OParsedData, with the requested column specified as a factor,
rather than numeric.

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
prosPath = system.file("extdata", "prostate.csv", package="h2o")
prostate.hex = h2o.importFile(localH2O, path = prosPath)
prostate.hex[,4] = as.factor(prostate.hex[,4])
summary(prostate.hex)
h2o.shutdown(localH2O)

as.h2o Converts an R object to an H2O object

Description

Convert an R object to an H2O object, copy contents of the object to the running instance of H2O

Usage

as.h2o(client, object, key = "", header, sep = "")

colnames 7

Arguments

client The h2o.init object that facilitates communication between R and H2O.
object The object in the R environment to be converted to an H2O object.
key (Optional) A reference assigned to the object in the instance of H2O (the key

part of the key-value store, where the value is the R object to be converted.)
header (Optional) A logical value indicating whether the first line of the file contains

column headers. If left empty, the parser will try to automatically detect this.
sep (Optional) The field separator character. Values on each line of the file are sep-

arated by this character. If sep = "", the parse

Details

The R object to be converted to an H2O object should be named so that it can be used in subsequent
analysis. Also note that the R object is converted to a parsed H2O data object, and will be treated
as a data frame by H2O in subsequent analysis.

Value

Converts an R object to an H2O Parsed data object.

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)

data(iris)
summary(iris)
iris.r <- iris
iris.h2o <- as.h2o(localH2O, iris.r, key="iris.h2o")
class(iris.h2o)
h2o.shutdown(localH2O)

colnames Returns column names for a parsed H2O data object.

Description

Returns column names for an H2OParsedData object.

Usage

colnames(x, do.NULL = TRUE, prefix = "col")

Arguments

x AnH2OParsedData object.
do.NULL Logical value. If FALSE and names are NULL, names are created.
prefix Character string denoting prefix for created column names.

8 Extremes

Value

Returns a vector of column names.

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
irisPath = system.file("extdata", "iris.csv", package="h2o")
iris.hex = h2o.importFile(localH2O, path = irisPath, key = "iris.hex")
summary(iris.hex)
colnames(iris.hex)
h2o.shutdown(localH2O)

Extremes Maxima and Minima

Description

Calculates the (parallel) minimum of the input values. This method extends the min generic to deal
with H2OParsedData objects.

Usage

max(..., na.rm = FALSE)
min(..., na.rm = FALSE)

Arguments

... Numeric, character or H2OParsedData arguments.

na.rm Logical value where FALSE does not remove NA’s in the calculation and TRUE
removes NA’s in the calculation.

Value

Returns the maximum or minimum over all the input arguments. For a H2OParsedData object, the
function is calculated over all entries in the dataset. An error will occur if any of those entries is
non-numeric.

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
ausPath = system.file("extdata", "australia.csv", package="h2o")
australia.hex = h2o.importFile(localH2O, path = ausPath, key = "australia.hex")
min(australia.hex)
min(c(-1, 0.5, 0.2), FALSE, australia.hex[,1:4])
h2o.shutdown(localH2O)

h2o.anyFactor 9

h2o.anyFactor Determine if an H2O parsed data object contains categorical data.

Description

Checks if an H2O parsed data object has any columns of categorical data.

Usage

h2o.anyFactor(x)

Arguments

x An H2OParsedData object.

Value

Returns a logical value indicating whether any of the columns in x are factors.

See Also

H2OParsedData

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
irisPath = system.file("extdata", "iris_wheader.csv", package="h2o")
iris.hex = h2o.importFile(localH2O, path = irisPath)
h2o.anyFactor(iris.hex)
h2o.shutdown(localH2O)

h2o.assign Assigns an H2O hex.key to an H2O object so that it can be utilized in
subsequent calls

Description

Allows users to assign H2O hex.keys to objects in their R environment so that they can manipulate
H2O data frames and parsed data objects.

Usage

h2o.assign(data, key)

10 h2o.clusterInfo

Arguments

data An H2OParsedData object

key The hex key to be associated with the H2O parsed data object

Value

The function returns an object of class H2OParsedData

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
prosPath = system.file("extdata", "prostate.csv", package = "h2o")
prostate.hex = h2o.importFile(localH2O, path = prosPath)
psa.qs = quantile(prostate.hex$PSA)
PSA.outliers = prostate.hex[prostate.hex$PSA <= psa.qs[2] | prostate.hex$PSA >= psa.qs[10],]
PSA.outliers = h2o.assign(PSA.outliers, "PSA.outliers")
summary(PSA.outliers)
head(prostate.hex)
head(PSA.outliers)
h2o.shutdown(localH2O)

h2o.clusterInfo Get Information on H2O Cluster

Description

Display the name, version, uptime, total nodes, total memory, total cores and health of a cluster
running H2O.

Usage

h2o.clusterInfo(client)

Arguments

client An H2OClient object containing the IP address and port of the server running
H2O.

See Also

H2OClient

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
h2o.clusterInfo(localH2O)
h2o.shutdown(localH2O)

h2o.clusterStatus 11

h2o.clusterStatus Retrieve Status of H2O Cluster

Description

Retrieve information on the status of the cluster running H2O.

Usage

h2o.clusterStatus(client)

Arguments

client An H2OClient object containing the IP address and port of the server running
H2O.

Details

This method prints the status of the H2O cluster represented by client, consisting of the following
information:

• Version: The version of H2O running on the cluster.

• Cloud Name: Name of the cluster.

• Node Name: Name of the node. (Defaults to the HTTP address).

• Cloud Size: Number of nodes in the cluster.

Furthermore, for each node, this function displays:

• name: Name of the node.

• value_size_bytes: Amount of data stored on the node.

• free_mem_bytes: Amount of free memory on the JVM.

• max_mem_bytes: Maximum amount of memory that the JVM will attempt to use.

• free_disk_bytes: Amount of free space on the disk that launched H2O.

• max_disk_bytes: Size of disk that launched H2O.

• num_cpus: Number of CPUs reported by JVM.

• system_load: Average system load.

• rpcs: Number of remote procedure calls.

• last_contact: Number of seconds since last heartbeat.

See Also

H2OClient, h2o.init

12 h2o.confusionMatrix

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
h2o.clusterStatus(localH2O)
h2o.shutdown(localH2O)

h2o.confusionMatrix Build a Confusion Matrix from H2O Classification Predictions

Description

Constructs a confusion matrix from a column of predicted responses and a column of actual (refer-
ence) responses in H2O. Note that confusion matrices describe prediciton errors for classification
data only.

Usage

h2o.confusionMatrix(data, reference)

Arguments

data An H2OParsedData object that represents the predicted response values. (Must
be a single column).

reference An H2OParsedData object that represents the actual response values. Must have
the same dimensions as data.

Value

Returns a confusion matrix with the actual value counts along the rows and the predicted value
counts along the columns.

See Also

H2OParsedData

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
prosPath = system.file("extdata", "prostate.csv", package="h2o")
prostate.hex = h2o.importFile(localH2O, path = prosPath)
prostate.gbm = h2o.gbm(x = 3:9, y = 2, data = prostate.hex)
prostate.pred = h2o.predict(prostate.gbm)
h2o.confusionMatrix(prostate.pred[,1], prostate.hex[,2])
h2o.shutdown(localH2O)

h2o.cut 13

h2o.cut Convert H2O Numeric Data to Factor

Description

Divides the range of the H2O data into intervals and codes the values according to which interval
they fall in. The leftmost interval corresponds to level one, the next is level two, etc.

Usage

h2o.cut(x, breaks)

Arguments

x An H2OParsedData object with numeric columns.

breaks A numeric vector of two or more unique cut points.

Value

A H2OParsedData object containing the factored data with intervals as levels.

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
irisPath = system.file("extdata", "iris_wheader.csv", package="h2o")
iris.hex = h2o.importFile(localH2O, path = irisPath, key = "iris.hex")
summary(iris.hex)

Cut sepal length column into intervals determined by min/max/quantiles
sepal_len.cut = h2o.cut(iris.hex$sepal_len, c(4.2, 4.8, 5.8, 6, 8))
head(sepal_len.cut)
summary(sepal_len.cut)
h2o.shutdown(localH2O)

h2o.downloadAllLogs Download H2O Log Files to Disk

Description

Download all H2O log files to local disk. Generally used for debugging purposes.

Usage

h2o.downloadAllLogs(client, dirname = ".", filename = NULL)

14 h2o.downloadCSV

Arguments

client An H2OClient object containing the IP address and port of the server running
H2O.

dirname (Optional) A character string indicating the directory that the log file should be
saved in.

filename (Optional) A character string indicating the name that the log file should be
saved to.

See Also

H2OClient

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
h2o.downloadAllLogs(localH2O, dirname = getwd(), filename = "h2o_logs.log")
file.info(paste(getwd(), "h2o_logs.log", sep = .Platform$file.sep))
file.remove(paste(getwd(), "h2o_logs.log", sep = .Platform$file.sep))
h2o.shutdown(localH2O)

h2o.downloadCSV Download H2O Data to Disk

Description

Download a H2O dataset to a CSV file on local disk.

Usage

h2o.downloadCSV(data, filename)

Arguments

data An H2OParsedData object to be downloaded.

filename A character string indicating the name that the CSV file should be saved to.

Details

This method requires wget or curl to be installed on your local system. WARNING: Files located on
the H2O server may be very large! Make sure you have enough hard drive space to accommodate
the entire file.

See Also

H2OParsedData, H2OParsedDataVA

h2o.exportHDFS 15

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
irisPath = system.file("extdata", "iris_wheader.csv", package = "h2o")
iris.hex = h2o.importFile(localH2O, path = irisPath)

myFile = paste(getwd(), "my_iris_file.csv", sep = .Platform$file.sep)
h2o.downloadCSV(iris.hex, myFile)
file.info(myFile)
file.remove(myFile)
h2o.shutdown(localH2O)

h2o.exportHDFS Export a H2O Model to HDFS

Description

Saves a model built from a H2O algorithm to HDFS.

Usage

h2o.exportHDFS(object, path)

Arguments

object An H2OModel object representing the model to be exported.

path The HDFS file path where the model should be saved.

See Also

H2OModel

Examples

Not run:
This is an example of how to export H2O models to HDFS.
The user must modify the path to his or her specific HDFS path for this example to run.
library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
irisPath = system.file("extdata", "iris_wheader.csv", package="h2o")
iris.hex = h2o.importFile(localH2O, path = irisPath)
iris.gbm = h2o.gbm(x = 1:4, y = 5, data = iris.hex)
h2o.exportHDFS(iris.gbm, path = "hdfs://192.168.1.161/datasets/models")
h2o.shutdown(localH2O)

End(Not run)

16 h2o.gbm

h2o.gbm H2O: Gradient Boosted Machines

Description

Builds gradient boosted classification trees, and gradient boosed regression trees on a parsed data
set.

Usage

h2o.gbm(x, y, distribution = "multinomial", data, n.trees = 10, interaction.depth = 5,
n.minobsinnode = 10, shrinkage = 0.1, n.bins = 100, validation)

Arguments

x A vector containing the names or indices of the predictor variables to use in
building the GBM model.

y The name or index of the response variable. If the data does not contain a header,
this is the column index number starting at 0, and increasing from left to right.
(The response must be either an integer or a categorical variable).

distribution The type of GBM model to be produced: classification is "multinomial" (de-
fault), "gaussian" is used for regression.

data An H2OParsedData object containing the variables in the model.

n.trees (Optional) Number of trees to grow. Must be a nonnegative integer.
interaction.depth

(Optional) Maximum depth to grow the tree.

n.minobsinnode (Optional) Minimum number of rows to assign to teminal nodes.

shrinkage (Optional) A learning-rate parameter defining step size reduction.

n.bins (Optional) Number of bins to use in building histogram.

validation (Optional) An H2OParsedData object indicating the validation dataset used to
construct confusion matrix. If left blank, this defaults to the training data.

Value

An object of class H2OGBMModel with slots key, data, and model, where the last is a list of the
following components:

type The type of the tree.

n.trees Number of trees grown.

oob_err Out of bag error rate.

forest A matrix giving the minimum, mean, and maximum of the tree depth and num-
ber of leaves.

confusion Confusion matrix of the prediction when classification model is specified.

h2o.glm 17

References

1. Elith, Jane, John R Leathwick, and Trevor Hastie. "A Working Guide to Boosted Regression
Trees." Journal of Animal Ecology 77.4 (2008): 802-813

2. Friedman, Jerome, Trevor Hastie, Saharon Rosset, Robert Tibshirani, and Ji Zhu. "Discussion of
Boosting Papers." Ann. Statist 32 (2004): 102-107

3. Hastie, Trevor, Robert Tibshirani, and J Jerome H Friedman. The Elements of Statistical Learn-
ing. Vol.1. N.p.: Springer New York, 2001. http://www.stanford.edu/~hastie/local.ftp/Springer/OLD//ESLII_print4.pdf

See Also

For more information see: http://docs.0xdata.com

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)

Run regression GBM on australia.hex data
ausPath = system.file("extdata", "australia.csv", package="h2o")
australia.hex = h2o.importFile(localH2O, path = ausPath)
independent <- c("premax", "salmax","minairtemp", "maxairtemp", "maxsst",

"maxsoilmoist", "Max_czcs")
dependent <- "runoffnew"
h2o.gbm(y = dependent, x = independent, data = australia.hex, n.trees = 10, interaction.depth = 3,

n.minobsinnode = 2, shrinkage = 0.2, distribution= "gaussian")

Run multinomial classification GBM on australia data
h2o.gbm(y = dependent, x = independent, data = australia.hex, n.trees = 15, interaction.depth = 5,

n.minobsinnode = 2, shrinkage = 0.01, distribution= "multinomial")
h2o.shutdown(localH2O)

h2o.glm H2O: Generalized Linear Models

Description

Fit a generalized linear model, specified by a response variable, a set of predictors, and a description
of the error distribution.

Usage

Default method:
h2o.glm(x, y, data, family, nfolds = 10, alpha = 0.5, lambda = 1e-5, epsilon = 1e-4,

standardize = TRUE, tweedie.p = ifelse(family == ’tweedie’, 1.5,
as.numeric(NA)), thresholds, version = 1)

Import to a ValueArray object:

18 h2o.glm

h2o.glm.VA(x, y, data, family, nfolds = 10, alpha = 0.5, lambda = 1e-5, epsilon = 1e-4,
standardize = TRUE, tweedie.p = ifelse(family == ’tweedie’, 1.5,
as.numeric(NA)), thresholds = ifelse(family==’binomial’, seq(0, 1, 0.01),
as.numeric(NA)))

Import to a FluidVecs object:
h2o.glm.FV(x, y, data, family, nfolds = 10, alpha = 0.5, lambda = 1e-5, epsilon = 1e-4,
standardize = TRUE, tweedie.p = ifelse(family == ’tweedie’, 1.5,
as.numeric(NA)))

Arguments

x A vector containing the names of the predictors in the model.

y The name of the response variable in the model.

data An H2OParsedDataVA (version = 1) or H2OParsedData (version = 2) object
containing the variables in the model.

family A description of the error distribution and corresponding link function to be used
in the model. Currently, Gaussian, binomial, Poisson, gamma, and Tweedie are
supported. When a model is specified as Tweedie, users must also specify the
appropriate Tweedie power.

nfolds (Optional) Number of folds for cross-validation. The default is 10.

alpha (Optional) The elastic-net mixing parameter, which must be in [0,1]. The penalty
is defined to be

P (α, β) = (1− α)/2||β||22 + α||β||1 =
∑
j

[(1− α)/2β2
j + α|βj |]

so alpha=1 is the lasso penalty, while alpha=0 is the ridge penalty.

lambda The shrinkage parameter, which multiples P (α, β) in the objective. The larger
lambda is, the more the coefficients are shrunk toward zero (and each other).

epsilon (Optional) Number indicating the cutoff for determining if a coefficient is zero.

standardize (Optional) Logical value indicating whether the data should be standardized (set
to mean = 0, variance = 1) before running GLM.

tweedie.p (Optional) The index of the power variance function for the tweedie distribution.
Only used if family = "tweedie".

thresholds (Optional) Degree to which to weight the sensitivity (the proportion of correctly
classified 1s) and specificity (the proportion of correctly classified 0s). The de-
fault option is joint optimization for the overall classification rate. Changing this
will alter the confusion matrix and the AUC. Only used if family = "binomial".

version (Optional) The version of GLM to run. If version = 1, this will run the more
stable ValueArray implementation, while version = 2 runs the faster, but still
beta stage FluidVecs implementation.

h2o.glm 19

Details

IMPORTANT: Currently, to run GLM with version = 1, you must import data to a ValueAr-
ray object using h2o.importFile.VA, h2o.importFolder.VA or one of its variants. To run with
version = 2, you must import data to a FluidVecs object using h2o.importFile.FV, h2o.importFolder.FV
or one of its variants.

Value

An object of class H2OGLMModelVA (version = 1) or H2OGLMModel (version = 2) with slots key,
data, model and xval. The slot model is a list of the following components:

coefficients A named vector of the coefficients estimated in the model.

rank The numeric rank of the fitted linear model.

family The family of the error distribution.

deviance The deviance of the fitted model.

aic Akaike’s Information Criterion for the final computed model.

null.deviance The deviance for the null model.

iter Number of algorithm iterations to compute the model.

df.residual The residual degrees of freedom.

df.null The residual degrees of freedom for the null model.

y The response variable in the model.

x A vector of the predictor variable(s) in the model.

auc Area under the curve.

training.err Average training error.

threshold Best threshold.

confusion Confusion matrix.

The slot xval is a list of H2OGLMModel or H2OGLMModelVA objects representing the cross-validation
models. (Each of these objects themselves has xval equal to an empty list).

See Also

h2o.importFile, h2o.importFolder, h2o.importHDFS, h2o.importURL, h2o.uploadFile

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)

Run GLM of CAPSULE ~ AGE + RACE + PSA + DCAPS
prostate.hex = h2o.importURL(localH2O, path = paste("https://raw.github.com",

"0xdata/h2o/master/smalldata/logreg/prostate.csv", sep = "/"), key = "prostate.hex")
h2o.glm(y = "CAPSULE", x = c("AGE","RACE","PSA","DCAPS"), data = prostate.hex, family = "binomial",

nfolds = 10, alpha = 0.5)
Run GLM of VOL ~ CAPSULE + AGE + RACE + PSA + GLEASON
myX = setdiff(colnames(prostate.hex), c("ID", "DPROS", "DCAPS", "VOL"))

20 h2o.importFile

h2o.glm(y = "VOL", x = myX, data = prostate.hex, family = "gaussian", nfolds = 5, alpha = 0.1)

Run GLM of IsDepDelayed ~ Distance + Origin + Dest + UniqueCarrier on airlines dataset in HDFS
airlines.hex = h2o.importURL(localH2O, path = paste("https://raw.github.com",
"0xdata/h2o/master/smalldata/airlines/AirlinesTrain.csv.zip", sep = "/"), version = 2)

h2o.glm(x = c(’Distance’, ’Origin’, ’Dest’, ’UniqueCarrier’), y = ’IsDepDelayed’,
family = ’binomial’, data = airlines.hex, version = 2)

h2o.shutdown(localH2O)

h2o.importFile Import Local Data File

Description

Imports a file from the local path and parses it, returning an object containing the identifying hex
key.

Usage

Default method:
h2o.importFile(object, path, key = "", parse = TRUE, header, sep = "", col.names,

version = 1)

Import to a ValueArray object:
h2o.importFile.VA(object, path, key = "", parse = TRUE, header, sep = "", col.names)

Import to a FluidVecs object:
h2o.importFile.FV(object, path, key = "", parse = TRUE, header, sep = "", col.names)

Arguments

object An H2OClient object containing the IP address and port of the server running
H2O.

path The path of the file to be imported. Each row of data appears as one line of the
file. If it does not contain an absolute path, the file name is relative to the current
working directory.

key (Optional) The unique hex key assigned to the imported file. If none is given, a
key will automatically be generated based on the file path.

parse (Optional) A logical value indicating whether the file should be parsed after
import.

header (Optional) A logical value indicating whether the first row is the column header.
If missing, H2O will automatically try to detect the presence of a header.

sep (Optional) The field separator character. Values on each line of the file are sep-
arated by this character. If sep = "", the parser will automatically detect the
separator.

h2o.importFolder 21

col.names (Optional) A H2OParsedDataVA (version = 1) or H2OParsedData (version = 2)
object containing a single delimited line with the column names for the file.

version (Optional) If version = 1, the file will be imported to a ValueArray object.
Otherwise, if version = 2, the file will be imported as a FluidVecs object.

Details

Calling the method with version = 1 is equivalent to h2o.importFile.VA, and version = 2 is
equivalent to h2o.importFile.FV.

WARNING: In H2O, import is lazy! Do not modify the data on hard disk until after parsing is
complete.

Value

If parse = TRUE, the function returns an object of class H2OParsedDataVA when version = 1
and an object of class H2OParsedData when version = 2. Otherwise, when parse = FALSE, it
returns an object of class H2ORawDataVA when version = 1 and an object of class H2ORawData
when version = 2.

See Also

h2o.importFolder, h2o.importHDFS, h2o.importURL, h2o.uploadFile

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
irisPath = system.file("extdata", "iris.csv", package = "h2o")
iris.hex = h2o.importFile(localH2O, path = irisPath, key = "iris.hex")
class(iris.hex)
summary(iris.hex)
iris.fv = h2o.importFile(localH2O, path = irisPath, key = "iris.fv", version = 2)
class(iris.fv)
h2o.shutdown(localH2O)

h2o.importFolder Import Local Directory of Data Files

Description

Imports all the files in the local directory and parses them, concatenating the data into a single H2O
data matrix and returning an object containing the identifying hex key.

22 h2o.importFolder

Usage

Default method:
h2o.importFolder(object, path, pattern = "", key = "", parse = TRUE, header,
sep = "", col.names, version = 1)

Import to a ValueArray object:
h2o.importFolder.VA(object, path, pattern = "", key = "", parse = TRUE, header,
sep = "", col.names)

Import to a FluidVecs object:
h2o.importFolder.FV(object, path, pattern = "", key = "", parse = TRUE, header,
sep = "", col.names)

Arguments

object An H2OClient object containing the IP address and port of the server running
H2O.

path The path of the folder directory to be imported. Each row of data appears as one
line of the file. If it does not contain an absolute path, the file name is relative to
the current working directory.

key (Optional) The unique hex key assigned to the imported file. If none is given, a
key will automatically be generated based on the file path.

pattern (Optional) Character string containing a regular expression to match file(s) in
the folder.

parse (Optional) A logical value indicating whether the file should be parsed after
import.

header (Optional) A logical value indicating whether the first row is the column header.
If missing, H2O will automatically try to detect the presence of a header.

sep (Optional) The field separator character. Values on each line of the file are sep-
arated by this character. If sep = "", the parser will automatically detect the
separator.

col.names (Optional) A H2OParsedDataVA (version = 1) or H2OParsedData (version = 2)
object containing a single delimited line with the column names for the file.

version (Optional) If version = 1, the folder of files will be imported to a ValueArray
object. Otherwise, if version = 2, the files will be imported as a FluidVecs
object.

Details

Calling the method with version = 1 is equivalent to h2o.importFolder.VA, and version = 2
is equivalent to h2o.importFolder.FV.

This method imports all the data files in a given folder and concatenates them together row-wise into
a single matrix represented by a H2OParsedDataVA (version = 1) or H2OParsedData (version = 2)
object. The data files must all have the same number of columns, and the columns must be lined up
in the same order, otherwise an error will be returned.

h2o.importHDFS 23

WARNING: In H2O, import is lazy! Do not modify the data files on hard disk until after parsing is
complete.

Value

If parse = TRUE, the function returns an object of class H2OParsedDataVA when version = 1
and an object of class H2OParsedData when version = 2. Otherwise, when parse = FALSE, it
returns an object of class H2ORawDataVA when version = 1 and an object of class H2ORawData
when version = 2.

See Also

h2o.importFile, h2o.importHDFS, h2o.importURL, h2o.uploadFile

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
myPath = system.file("extdata", "prostate_folder", package = "h2o")
prostate_all.hex = h2o.importFolder(localH2O, path = myPath)
class(prostate_all.hex)
summary(prostate_all.hex)
prostate_all.fv = h2o.importFolder(localH2O, path = myPath, version = 2)
class(prostate_all.fv)
h2o.shutdown(localH2O)

h2o.importHDFS Import from HDFS

Description

Imports a HDFS file or set of files in a directory and parses them, returning a object containing the
identifying hex key.

Usage

Default method:
h2o.importHDFS(object, path, pattern = "", key = "", parse = TRUE, header,

sep = "", col.names, version = 1)

Import to a ValueArray object:
h2o.importHDFS.VA(object, path, pattern = "", key = "", parse = TRUE, header,
sep = "", col.names)

Import to a FluidVecs object:
h2o.importHDFS.FV(object, path, pattern = "", key = "", parse = TRUE, header,
sep = "", col.names)

24 h2o.importHDFS

Arguments

object An H2OClient object containing the IP address and port of the server running
H2O.

path The path of the file or folder directory to be imported. If it does not contain an
absolute path, the file name is relative to the current working directory.

pattern (Optional) Character string containing a regular expression to match file(s) in
the folder.

key (Optional) The unique hex key assigned to the imported file. If none is given, a
key will automatically be generated based on the file path.

parse (Optional) A logical value indicating whether the file should be parsed after
import.

header (Optional) A logical value indicating whether the first row is the column header.
If missing, H2O will automatically try to detect the presence of a header.

sep (Optional) The field separator character. Values on each line of the file are sep-
arated by this character. If sep = "", the parser will automatically detect the
separator.

col.names (Optional) A H2OParsedDataVA (version = 1) or H2OParsedData (version = 2)
object containing a single delimited line with the column names for the file.

version (Optional) If version = 1, the file will be imported to a ValueArray object.
Otherwise, if version = 2, the file will be imported as a FluidVecs object.

Details

Calling the method with version = 1 is equivalent to h2o.importHDFS.VA, and version = 2 is
equivalent to h2o.importHDFS.FV.

When path is a directory, this method acts like h2o.importFolder and concatenates all data files
in the folder into a single ValueArray object.

WARNING: In H2O, import is lazy! Do not modify the data files on hard disk until after parsing is
complete.

Value

If parse = TRUE, the function returns an object of class H2OParsedDataVA when version = 1
and an object of class H2OParsedData when version = 2. Otherwise, when parse = FALSE, it
returns an object of class H2ORawDataVA when version = 1 and an object of class H2ORawData
when version = 2.

See Also

h2o.importFile, h2o.importFolder, h2o.importURL, h2o.uploadFile

Examples

Not run:
This is an example of how to import files from HDFS.
The user must modify the path to his or her specific HDFS path for this example to run.

h2o.importURL 25

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
iris.hex = h2o.importHDFS(localH2O, path = paste("hdfs://192.168.1.161",

"datasets/runit/iris_wheader.csv", sep = "/"), parse = TRUE)
class(iris.hex)
summary(iris.hex)
iris.fv = h2o.importHDFS(localH2O, path = paste("hdfs://192.168.1.161",

"datasets/runit/iris_wheader.csv", sep = "/"), parse = TRUE, version = 2)
class(iris.fv)

iris_folder.hex = h2o.importHDFS(localH2O, path = paste("hdfs://192.168.1.161",
"datasets/runit/iris_test_train", sep = "/"))

summary(iris_folder.hex)
h2o.shutdown(localH2O)

End(Not run)

h2o.importURL Import Data from URL

Description

Imports a file from the URL and parses it, returning an object containing the identifying hex key.

Usage

Default method:
h2o.importURL(object, path, key = "", parse = TRUE, header,

sep = "", col.names, version = 1)

Import to a ValueArray object:
h2o.importURL.VA(object, path, key = "", parse = TRUE, header,
sep = "", col.names)

Import to a FluidVecs object:
h2o.importURL.FV(object, path, key = "", parse = TRUE, header,
sep = "", col.names)

Arguments

object An H2OClient object containing the IP address and port of the server running
H2O.

path The complete URL of the file to be imported. Each row of data appears as one
line of the file.

key (Optional) The unique hex key assigned to the imported file. If none is given, a
key will automatically be generated based on the URL path.

parse (Optional) A logical value indicating whether the file should be parsed after
import.

26 h2o.importURL

header (Optional) A logical value indicating whether the first row is the column header.
If missing, H2O will automatically try to detect the presence of a header.

sep (Optional) The field separator character. Values on each line of the file are sep-
arated by this character. If sep = "", the parser will automatically detect the
separator.

col.names (Optional) A H2OParsedDataVA (version = 1) or H2OParsedData (version = 2)
object containing a single delimited line with the column names for the file.

version (Optional) If version = 1, the file will be imported to a ValueArray object.
Otherwise, if version = 2, the file will be imported as a FluidVecs object.

Details

Calling the method with version = 1 is equivalent to h2o.importURL.VA, and version = 2 is
equivalent to h2o.importURL.FV.

WARNING: In H2O, import is lazy! Do not modify the data on hard disk until after parsing is
complete.

Value

If parse = TRUE, the function returns an object of class H2OParsedDataVA when version = 1
and an object of class H2OParsedData when version = 2. Otherwise, when parse = FALSE, it
returns an object of class H2ORawDataVA when version = 1 and an object of class H2ORawData
when version = 2.

See Also

h2o.importFile, h2o.importFolder, h2o.importHDFS, h2o.uploadFile

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
prostate.hex = h2o.importURL(localH2O, path = paste("https://raw.github.com",

"0xdata/h2o/master/smalldata/logreg/prostate.csv", sep = "/"), key = "prostate.hex")
class(prostate.hex)
summary(prostate.hex)

prostate.fv = h2o.importURL(localH2O, path = paste("https://raw.github.com",
"0xdata/h2o/master/smalldata/logreg/prostate.csv", sep = "/"), key = "prostate.hex",
version = 2)

class(prostate.fv)
h2o.shutdown(localH2O)

h2o.init 27

h2o.init Connect to H2O and Install R Package

Description

Connects to a running H2O instance and checks the local H2O R package is the correct version (i.e.
that the version of the R package and the version of H2O are the same).

Usage

h2o.init(ip = "127.0.0.1", port = 54321, startH2O = TRUE, Xmx = "1g")

Arguments

ip Object of class "character" representing the IP address of the server where
H2O is running.

port Object of class "numeric" representing the port number of the H2O server.

startH2O (Optional) A logical value indicating whether to start the H2O launcher GUI if
no connection with H2O is detected. This is only possible if H2O was installed
from the InstallBuilder executable and ip = "localhost" or ip = "127.0.0.1".

Xmx (Optional) A string specifying the maximum size, in bytes, of the memory al-
location pool to H2O. This value must a multiple of 1024 greater than 2MB.
Append the letter m or M to indicate megabytes, or g or G to indicate gigabytes.

Details

This method first checks if H2O is connectable. If it cannot connect and startH2O = TRUE with IP
of localhost, it will attempt to start an instance of H2O with IP = localhost, port = 54321. Otherwise,
it stops immediately with an error. Once connected, the method checks to see if the local H2O R
package version matches the version of H2O running on the server. If there is a mismatch and the
user indicates she wishes to upgrade, it will remove the local H2O R package and download/install
the H2O R package from the server.

Value

Once the package is successfully installed, this method will load it and return a H2OClient object
containing the IP address and port number of the H2O server. See the H2O R package documenta-
tion for more details, or type ??h2o.

Note

Users may wish to manually upgrade their package (rather than waiting until being prompted),
which requires that they fully uninstall and reinstall the H2O package, and the H2O client package.
You must unload packages running in the environment before upgrading. It’s reccomended that
users restart R or R studio after upgrading.

http://docs.0xdata.com/userguide/topR.html
http://docs.0xdata.com/userguide/topR.html

28 h2o.kmeans

See Also

h2o.shutdown

Examples

Try to create a localhost connection to H2O.
localH2O = h2o.init()
localH2O = h2o.init(ip = "localhost", port = 54321)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = FALSE)
h2o.shutdown(localH2O)

h2o.kmeans H2O: K-Means Clustering

Description

Performs k-means clustering on a data set.

Usage

Default method:
h2o.kmeans(data, centers, cols = "", iter.max = 10, normalize = FALSE,

init = "none", seed = 0, version = 1)

Import to a ValueArray object:
h2o.kmeans.VA(data, centers, cols = "", iter.max = 10, normalize = FALSE,
init = "none", seed = 0)

Import to a FluidVecs object:
h2o.kmeans.FV(data, centers, cols = "", iter.max = 10, normalize = FALSE,
init = "none", seed = 0)

Arguments

data An H2OParsedDataVA (version = 1) or H2OParsedData (version = 2) object
containing the variables in the model.

centers The number of clusters k.

cols (Optional) A vector containing the names of the data columns on which k-means
runs. If blank, k-means clustering will be run on the entire data set.

iter.max (Optional) The maximum number of iterations allowed.

normalize (Optional) A logical value indicating whether the data should be normalized
before running k-means.

init (Optional) Method by which to select the k initial cluster centroids. Possible val-
ues are "none" for random initialization, "plusplus" for k-means++ initializa-
tion, and "furthest" for initialization at the furthest point from each successive
centroid. See the H2O K-means documentation for more details.

http://docs.0xdata.com/datascience/kmeans.html

h2o.kmeans 29

seed (Optional) Random seed used to initialize the cluster centroids.

version (Optional) The version of k-means clustering to run. If version = 1, this will
run the more stable ValueArray implementation, while version = 2 selects the
faster, but still beta stage FluidVecs implementation.

Details

IMPORTANT: Currently, to run k-means with version = 1, you must import data to a ValueAr-
ray object using h2o.importFile.VA, h2o.importFolder.VA or one of its variants. To run with
version = 2, you must import data to a FluidVecs object using h2o.importFile.FV, h2o.importFolder.FV
or one of its variants.

Value

An object of class H2OKMeansModelVA (version = 1) or H2OKMeansModel (version = 2) with
slots key, data, and model, where the last is a list of the following components:

centers A matrix of cluster centers.

cluster A H2OParsedDataVA (version = 1) or H2OParsedData (version = 2) object
containing the vector of integers (from 1 to k), which indicate the cluster to
which each point is allocated.

size The number of points in each cluster.

withinss Vector of within-cluster sum of squares, with one component per cluster.

tot.withinss Total within-cluster sum of squares, i.e., sum(withinss).

See Also

h2o.importFile, h2o.importFolder, h2o.importHDFS, h2o.importURL, h2o.uploadFile

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
prosPath = system.file("extdata", "prostate.csv", package = "h2o")
prostate.hex = h2o.importFile(localH2O, path = prosPath)
h2o.kmeans(data = prostate.hex, centers = 10, cols = c("AGE", "RACE", "VOL", "GLEASON"))

covPath = system.file("extdata", "covtype.csv", package = "h2o")
covtype.hex = h2o.importFile(localH2O, path = covPath, version = 2)
h2o.kmeans(data = covtype.hex, centers = 5, cols = c(1, 2, 3), version = 2)
h2o.shutdown(localH2O)

30 h2o.ls

h2o.logAndEcho Write and Echo Message to H2O Log

Description

Write a user-defined message to the H2O Java log file and echo it back to the user.

Usage

h2o.logAndEcho(conn, message)

Arguments

conn An H2OClient object containing the IP address and port of the server running
H2O.

message A character string to write to the H2O Java log file.

See Also

H2OClient, h2o.downloadAllLogs

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
h2o.logAndEcho(localH2O, "Test log and echo method.")
h2o.shutdown(localH2O)

h2o.ls Obtain a list of H2O keys from the running instance of H2O

Description

Allows users to access a list of object keys in the running instance of H2O

Usage

h2o.ls(object, pattern)

Arguments

object An H2OClient object containing the IP address and port number of the H2O
server.

pattern A string indicating the type of key to be returned. When pattern is left is un-
specified all keys are returned.

h2o.nn 31

Value

Returns a list of hex keys in the current instance of H2O, and their associated sizes in bytes.

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
prosPath = system.file("extdata", "prostate.csv", package="h2o")
prostate.hex = h2o.importFile(localH2O, path = prosPath, key = "prostate.hex")
s = runif(nrow(prostate.hex))
prostate.train = prostate.hex[s <= 0.8,]
prostate.train = h2o.assign(prostate.train, "prostate.train")
h2o.ls(localH2O)
h2o.shutdown(localH2O)

h2o.nn H2O: Neural Networks

Description

Performs neural networks on an H2OParsedData object.

Usage

h2o.nn(x, y, data, classification = TRUE, activation = "Tanh", dropout = as.numeric(NA),
layers = 500, rate = 0.01, annealing_rate = 1e-6, l1_reg = 1e-4, l2_reg = 0.0010,
mom_start = 0.5, mom_ramp = 1e6, mom_stable = 0.99, epochs = 100, validation)

Arguments

x A vector containing the names of the predictors in the model.

y The name of the response variable in the model.

data An H2OParsedData object containing the variables in the model.

classification (Optional) A logical value indicating whether the algorithm should conduct clas-
sification.

activation (Optional) A string indicating the activation function to use. Must be either
"Tanh", "Rectifier", or "Maxout".

dropout (Optional) Input layer dropout ratio.

layers (Optional) Size of the hidden layers.

rate (Optional) The learning rate. A higher learning rate will cause the algorithm to
be less stable, while a lower learning rate will result in slower convergence.

annealing_rate (Optional) The learning annealing rate is equal to

rate/(1 + annealingrate ∗ samples)

.

32 h2o.parseRaw

l1_reg (Optional) L1 regularization parameter.

l2_reg (Optional) L2 regularization parameter.

mom_start (Optional) Initial momentum at the beginning of training.

mom_ramp (Optional) Number of training samples for which momentum increases.

mom_stable (Optional) Final momentum after the ramp is over.

epochs (Optional) Number of times the dataset should be iterated. (Can be less than
1.0).

validation (Optional) An H2OParsedData object indicating the validation dataset used to
construct confusion matrix. If left blank, this defaults to the training data.

Value

An object of class H2ONNModel with slots key, data, and model, where the last is a list of the
following components:

confusion The confusion matrix of the response, with actual observations as rows and pre-
dicted values as columns.

train_class_err

Classification error on the training dataset.

train_sqr_err Mean-squared error on the training dataset.

valid_class_err

Classification error on the validation dataset.

valid_sqr_err Mean-squared error on the validation dataset.

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
irisPath = system.file("extdata", "iris.csv", package = "h2o")
iris.hex = h2o.importFile(localH2O, path = irisPath)
h2o.nn(x = 1:4, y = 5, data = iris.hex, activation = "Rectifier", rate = 0.05)
h2o.shutdown(localH2O)

h2o.parseRaw Parse Raw Data File

Description

Parses a raw data file, returning an object containing the identifying hex key.

h2o.parseRaw 33

Usage

Default method:
h2o.parseRaw(data, key = "", header, sep = "", col.names, version = 1)

Import to a ValueArray object:
h2o.parseRaw.VA(data, key = "", header, sep = "", col.names)

Import to a FluidVecs object:
h2o.parseRaw.FV(data, key = "", header, sep = "", col.names)

Arguments

data An H2ORawDataVA (version = 1) or H2ORawData (version = 2) object to be
parsed.

key (Optional) The hex key assigned to the parsed file.

header (Optional) A logical value indicating whether the first row is the column header.
If missing, H2O will automatically try to detect the presence of a header.

sep (Optional) The field separator character. Values on each line of the file are sep-
arated by this character. If sep = "", the parser will automatically detect the
separator.

col.names (Optional) A H2OParsedDataVA (version = 1) or H2OParsedData (version = 2)
object containing a single delimited line with the column names for the file.

version (Optional) If version = 1, the file will be parsed to a ValueArray object. Oth-
erwise, if version = 2, the file will be parsed to a FluidVecs object.

Details

Calling the method with version = 1 is equivalent to h2o.parseRaw.VA, and version = 2 is equiv-
alent to h2o.parseRaw.FV. h2o.parseRaw.VA should only be used to parse raw data imported using
h2o.importFile.VA, h2o.importFolder.VA, or one of its variants. Similarly, h2o.parseRaw.FV
should only be used to parse raw data imported using h2o.importFile.FV, h2o.importFolder.FV,
or one of its variants.

After the raw data file is parsed, it will be automatically deleted from the H2O server.

Value

An object of class H2OParsedDataVA (version = 1) or H2OParsedData (version = 2), repre-
senting the dataset that was parsed.

See Also

h2o.importFile, h2o.importFolder, h2o.importHDFS, h2o.importURL, h2o.uploadFile

34 h2o.pcr

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
prosPath = system.file("extdata", "prostate.csv", package="h2o")
prostate.raw = h2o.importFile(localH2O, path = prosPath, parse = FALSE)
Do not modify prostate.csv on disk at this point!
prostate.hex = h2o.parseRaw(data = prostate.raw, key = "prostate.hex")
After parsing, it is okay to modify or delete prostate.csv
h2o.shutdown(localH2O)

h2o.pcr H2O: Principal Components Regression

Description

Runs GLM regression on PCA results, and allows for transformation of test data to match PCA
transformations of training data.

Usage

h2o.pcr(x, y, data, ncomp, family, nfolds = 10, alpha = 0.5, lambda = 1e-05,
epsilon = 1e-05, tweedie.p)

Arguments

x A vector containing the names of the predictors in the model.
y The name of the response variable in the model.
data An H2OParsedData object containing the variables in the model.
ncomp A number indicating the number of principal components to use in the regression

model.
family A description of the error distribution and corresponding link function to be used

in the model. Currently, Gaussian, binomial, Poisson, gamma, and Tweedie are
supported.

nfolds (Optional) Number of folds for cross-validation. The default is 10.
alpha (Optional) The elastic-net mixing parameter, which must be in [0,1]. The penalty

is defined to be

P (α, β) = (1− α)/2||β||22 + α||β||1 =
∑
j

[(1− α)/2β2
j + α|βj |]

so alpha=1 is the lasso penalty, while alpha=0 is the ridge penalty.
lambda (Optional) The shrinkage parameter, which multiples P (α, β) in the objective.

The larger lambda is, the more the coefficients are shrunk toward zero (and each
other).

epsilon (Optional) Number indicating the cutoff for determining if a coefficient is zero.
tweedie.p The index of the power variance function for the tweedie distribution. Only used

if family = "tweedie"

h2o.pcr 35

Details

This method standardizes the data, obtains the first ncomp principal components using PCA (in
decreasing order of standard deviation), and then runs GLM with the components as the predictor
variables.

Value

An object of class H2OGLMModel with slots key, data, model and xval. The slot model is a list of the
following components:

coefficients A named vector of the coefficients estimated in the model.

rank The numeric rank of the fitted linear model.

family The family of the error distribution.

deviance The deviance of the fitted model.

aic Akaike’s Information Criterion for the final computed model.

null.deviance The deviance for the null model.

iter Number of algorithm iterations to compute the model.

df.residual The residual degrees of freedom.

df.null The residual degrees of freedom for the null model.

y The response variable in the model.

x A vector of the predictor variable(s) in the model.

auc Area under the curve.

training.err Average training error.

threshold Best threshold.

confusion Confusion matrix.

The slot xval is a list of H2OGLMModel objects representing the cross-validation models. (Each of
these objects themselves has xval equal to an empty list).

See Also

h2o.prcomp, h2o.glm

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)

Run PCR on Prostate Data
prostate.hex = h2o.importURL(localH2O, path = paste("https://raw.github.com",

"0xdata/h2o/master/smalldata/logreg/prostate.csv", sep = "/"), key = "prostate.hex")
h2o.pcr(x = c("AGE","RACE","PSA","DCAPS"), y = "CAPSULE", data = prostate.hex, family = "binomial",

nfolds = 10, alpha = 0.5, ncomp = 3)
h2o.shutdown(localH2O)

36 h2o.prcomp

h2o.prcomp Principal Components Analysis

Description

Performs principal components analysis on the given data set.

Usage

h2o.prcomp(data, tol = 0, ignored_cols = "", standardize = TRUE, retx = FALSE)

Arguments

data An H2OParsedData object on which to run principal components analysis.

tol (Optional) A value indicating the magnitude below which components should
be omitted. (Components are omitted if their standard deviations are less than
or equal to tol times the standard deviation of the first component.) With the
default setting tol = 0, no components are omitted.

ignored_cols (Optional) A vector of column names or indices indicating the features to ignore
when performing PCA. By default, all columns in the dataset are analyzed.

standardize (Optional) A logical value indicating whether the variables should be shifted to
be zero centered and scaled to have unit variance before the analysis takes place.

retx (Optional) A logical value indicating whether the rotated variables should be
returned.

Details

The calculation is done by a singular value decomposition of the (possibly standardized) data set.

Value

An object of class H2OPCAModel with slots key, data, and model, where the last is a list of the
following components:

standardized A logical value indicating whether the data was centered and scaled.

sdev The standard deviations of the principal components (i.e., the square roots of the
eigenvalues of the covariance/correlation matrix).

rotation The matrix of variable loadings (i.e., a matrix whose columns contain the eigen-
vectors).

Note

The signs of the columns of the rotation matrix are arbitrary, and so may differ between different
programs for PCA.

h2o.predict 37

See Also

h2o.pcr

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
ausPath = system.file("extdata", "australia.csv", package="h2o")
australia.hex = h2o.importFile(localH2O, path = ausPath)
australia.pca = h2o.prcomp(data = australia.hex, standardize = TRUE)
print(australia.pca)
h2o.shutdown(localH2O)

h2o.predict H2O Model Predictions

Description

Obtains predictions from various fitted H2O model objects.

Usage

h2o.predict(object, newdata)

Arguments

object A fitted H2OModel or H2OModelVA object for which prediction is desired.

newdata (Optional) A H2OParsedData or H2OParsedDataVA object in which to look
for variables with which to predict. If omitted, the data used to fit the model
object@data are used.

Details

This method dispatches on the type of H2O model to select the correct prediction/scoring algorithm.

Value

A H2OParsedData or H2OParsedDataVA object containing the predictions.

See Also

h2o.glm, h2o.kmeans, h2o.randomForest, h2o.prcomp, h2o.gbm, h2o.nn

38 h2o.randomForest

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
Run GLM of CAPSULE ~ AGE + RACE + PSA + DCAPS
prostate.hex = h2o.importURL.VA(localH2O, path = paste("https://raw.github.com",

"0xdata/h2o/master/smalldata/logreg/prostate.csv", sep = "/"), key = "prostate.hex")
prostate.glm = h2o.glm(y = "CAPSULE", x = c("AGE","RACE","PSA","DCAPS"), data = prostate.hex,

family = "binomial", nfolds = 10, alpha = 0.5)
Get fitted values of prostate dataset
prostate.fit = h2o.predict(object = prostate.glm, newdata = prostate.hex)
summary(prostate.fit)

Run K-Means Model on prostate data set
covPath = system.file("extdata", "covtype.csv", package="h2o")
covtype.hex = h2o.importFile(localH2O, path = covPath)
covtype.km = h2o.kmeans(data = covtype.hex, centers = 5, cols = c(1, 2, 3))
Get predicted cluster information for covtype dataset
covtype.clusters = h2o.predict(object = covtype.km, newdata = covtype.hex)
summary(covtype.clusters)
h2o.shutdown(localH2O)

h2o.randomForest H2O: Random Forest

Description

Performs random forest classification on a data set.

Usage

Default method:
h2o.randomForest(x, y, data, ntree = 50, depth = 50, sample.rate = 2/3, classwt = NULL,

nbins = 100, seed = -1, importance = FALSE, validation, nodesize = 1,
use_non_local = TRUE, version = 1)

Import to a ValueArray object:
h2o.randomForest.VA(x, y, data, ntree = 50, depth = 50, sample.rate = 2/3,
classwt = NULL, nbins = 100, seed = -1, use_non_local = TRUE)

Import to a FluidVecs object:
h2o.randomForest.FV(x, y, data, ntree = 50, depth = 50, sample.rate = 2/3, nbins = 100,
seed = -1, importance = FALSE, validation, nodesize = 1)

Arguments

x A vector containing the names or indices of the predictor variables to use in
building the random forest model.

h2o.randomForest 39

y The name or index of the response variable. If the data does not contain a header,
this is the column index, designated by increasing numbers from left to right.
(The response must be either an integer or a categorical variable).

data An H2OParsedDataVA (version = 1) or H2OParsedData (version = 2) object
containing the variables in the model.

ntree (Optional) Number of trees to grow. (Must be a nonnegative integer).

depth (Optional) Maximum depth to grow the tree.

sample.rate (Optional) Sampling rate for constructing data from which individual trees are
grown.

classwt (Optional) Numeric vector of class weights for a categorical response.

nbins (Optional) Build a histogram of this many bins, then split at best point.

seed (Optional) Seed for building the random forest. If seed = -1, one will automat-
ically be generated by H2O.

importance (Optional) A logical value indicating whether to calculate variable importance.
Set to FALSE to speed up computations.

validation (Optional) An H2OParsedDataVA (version = 1) or H2OParsedData (version = 2)
object indicating the validation dataset used to construct confusion matrix. If left
blank, this defaults to the training data.

nodesize (Optional) Number of nodes to use for computation.

use_non_local (Optional) Logical value indicating whether to use non-local data in building
random forest model.

version (Optional) The version of random forest to run. If version = 1, this will run
the single-node ValueArray implementation, while version = 2 selects the
distributed, but still beta stage FluidVecs implementation.

Details

IMPORTANT: Currently, to run k-means with version = 1, you must import data to a ValueAr-
ray object using h2o.importFile.VA, h2o.importFolder.VA or one of its variants. To run with
version = 2, you must import data to a FluidVecs object using h2o.importFile.FV, h2o.importFolder.FV
or one of its variants.

Value

An object of class H2ORFModelVA (version = 1) or H2ODRFModel (version = 2) with slots key,
data, and model, where the last is a list of the following components:

ntree Number of trees grown.

mse Mean-squared error for each tree.

forest A matrix giving the minimum, mean, and maximum of the tree depth and num-
ber of leaves.

confusion Confusion matrix of the prediction.

40 h2o.rm

Examples

Run an RF model on iris data
library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
irisPath = system.file("extdata", "iris.csv", package = "h2o")
iris.hex = h2o.importFile(localH2O, path = irisPath, key = "iris.hex")
h2o.randomForest(y = 5, x = c(2,3,4), data = iris.hex, ntree = 50, depth = 100)

Run an RF model on covtype data
covPath = system.file("extdata", "covtype.csv", package="h2o")
covtype.hex = h2o.importFile(localH2O, path = covPath, key = "covtype.hex", version = 2)
h2o.randomForest(y = "Cover_Type", x = setdiff(colnames(covtype.hex), c("Cover_Type",
"Aspect", "Hillshade_9am")), data = covtype.hex, ntree = 50, depth = 150, version = 2)

h2o.shutdown(localH2O)

h2o.rm Removes H2O objects from the server where H2O is running.

Description

Allows users to remove H2O objects from the server where the instance of H2O is running. This
call acts on the H2O server through the R console, and does NOT remove the associated named
object from the R environment.

Usage

h2o.rm(object, keys)

Arguments

object An H2OClient object containing the IP address and port of the server running
H2O.

keys the hex key associated with the object to be removed.

Note

Users may wish to remove an H2O object on the server that is associated with an object in the R
environment. Recommended behavior is to also remove the object in the R environment. See the
second example at the end of this section.

See Also

h2o.assign, h2o.ls

h2o.runif 41

Examples

Remove an H2O object from the server where H2O is running.
library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
prosPath = system.file("extdata", "prostate.csv", package="h2o")
prostate.hex = h2o.importFile(localH2O, path = prosPath, key = "prostate.hex")

Remove an H2O object from the server and from the R environment
h2o.ls(localH2O)
h2o.rm(object = localH2O, keys = "prostate.hex")
remove(prostate.hex)
h2o.ls(localH2O)
h2o.shutdown(localH2O)

h2o.runif Produces a vector of specified length contain random uniform numbers

Description

Produces a vector of random uniform numbers.

Usage

h2o.runif(x, min, max)

Arguments

x An H2OParsedData object with number of rows equal to the number of elements
the vector of random numbers should have.

min An integer specifying the lower bound of the distribution.

max An integer specifying the upper bound of the distribution.

Details

x must be a H2OParsedData object so that H2O can generate random numbers aligned with the
dataset for efficient large-scale sampling and filtering.

Value

A vector of random, uniformly distributed numbers. The elements are between 0 and 1 unless
otherwise specified.

42 h2o.shutdown

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
prosPath = system.file("extdata", "prostate.csv", package="h2o")
prostate.hex = h2o.importFile(localH2O, path = prosPath, key = "prostate.hex")
s = h2o.runif(prostate.hex)
summary(s)

prostate.train = prostate.hex[s <= 0.8,]
prostate.train = h2o.assign(prostate.train, "prostate.train")
prostate.test = prostate.hex[s > 0.8,]
prostate.test = h2o.assign(prostate.test, "prostate.test")
nrow(prostate.train) + nrow(prostate.test)
h2o.shutdown(localH2O)

h2o.shutdown Shutdown H2O server

Description

Shuts down the specified H2O instance. All data on the server will be lost!

Usage

h2o.shutdown(client, prompt = TRUE)

Arguments

client An H2OClient client containing the IP address and port of the server running
H2O.

prompt (Optional) A logical value indicating whether to prompt the user before shutting
down the H2O server.

Details

This method checks if H2O is running at the specified IP address and port, and if it is, shuts down
that H2O instance. WARNING: All data, models, and other values stored on the server will be lost!
Only call this function if you and all other clients connected to the H2O server are finished and have
saved your work.

Note

Users must call h2o.shutdown explicitly in order to shut down the local H2O instance started by R.
If R is closed before H2O, then an attempt will be made to automatically shut down H2O. This only
applies to local instances started with h2o.init, not remote H2O servers.

See Also

h2o.init

h2o.table 43

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
h2o.shutdown(localH2O)

h2o.table Cross Tabulation of H2O Data

Description

Uses the cross-classifying factors to build a table of counts at each combination of factor levels.

Usage

h2o.table(x)

Arguments

x An H2OParsedData object with at most two integer or factor columns.

Value

A H2OParsedData object containing the contingency table. If x has a single column, this will just
be the counts of each factor level.

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
prosPath = system.file("extdata", "prostate.csv", package="h2o")
prostate.hex = h2o.importFile(localH2O, path = prosPath, key = "prostate.hex")
summary(prostate.hex)

Counts of the ages of all patients
head(h2o.table(prostate.hex[,3]))

Two-way table of ages (rows) and race (cols) of all patients
head(h2o.table(prostate.hex[,c(3,4)]))
h2o.shutdown(localH2O)

44 h2o.uploadFile

h2o.uploadFile Upload Local Data File

Description

Uploads a file from the local drive and parses it, returning an object containing the identifying hex
key.

Usage

Default method:
h2o.uploadFile(object, path, key = "", parse = TRUE, header,

sep = "", col.names, silent = TRUE, version = 1)

Import to a ValueArray object:
h2o.uploadFile.VA(object, path, key = "", parse = TRUE, header,
sep = "", col.names, silent = TRUE)

Import to a FluidVecs object:
h2o.uploadFile.FV(object, path, key = "", parse = TRUE, header,
sep = "", col.names, silent = TRUE)

Arguments

object An H2OClient object containing the IP address and port of the server running
H2O.

path The complete URL or normalized file path of the file to be imported. Each row
of data appears as one line of the file.

key (Optional) The unique hex key assigned to the imported file. If none is given, a
key will automatically be generated based on the URL path.

parse (Optional) A logical value indicating whether the file should be parsed after
import.

header (Optional) A logical value indicating whether the first line of the file contains
column headers. If left empty, the parser will try to automatically detect this.

sep (Optional) The field separator character. Values on each line of the file are sep-
arated by this character. If sep = "", the parser will automatically detect the
separator.

col.names (Optional) A H2OParsedDataVA (version = 1) or H2OParsedData (version = 2)
object containing a single delimited line with the column names for the file.

silent (Optional) A logical value indicating whether or not to display an upload progress
bar.

version (Optional) If version = 1, the file will be imported to a ValueArray object.
Otherwise, if version = 2, the file will be imported as a FluidVecs object.

h2o.__changeLogPath 45

Details

Calling the method with version = 1 is equivalent to h2o.uploadFile.VA, and version = 2 is
equivalent to h2o.uploadFile.FV.

WARNING: In H2O, import is lazy! Do not modify the data on hard disk until after parsing is
complete.

Value

If parse = TRUE, the function returns an object of class H2OParsedDataVA when version = 1 and
an object of class H2OParsedData when version = 2. Otherwise, when parse = FALSE, it returns
an object of class H2OParsedDataVA when version = 1 and an object of class H2ORawData when
version = 2.

See Also

h2o.importFile, h2o.importFolder, h2o.importHDFS, h2o.importURL

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
prosPath = system.file("extdata", "prostate.csv", package = "h2o")
prostate.hex = h2o.uploadFile(localH2O, path = prosPath, key = "prostate.hex")
class(prostate.hex)
summary(prostate.hex)
prostate.fv = h2o.uploadFile(localH2O, path = prosPath, key = "prostate.fv", version = 2)
class(prostate.fv)
h2o.shutdown(localH2O)

h2o.__changeLogPath Change Path Where H2O R Logs are Saved

Description

Change the file path where H2O R command and error response logs are currently being saved.

Usage

h2o.__changeLogPath(path, type)

Arguments

path A character string indicating the new file path where logs should be saved.

type Which log file’s path to modify. Either "Command" for POST commands sent
between R and H2O, or "Error" for errors returned by H2O in the HTTP re-
sponse.

46 h2o.__clearLogs

See Also

h2o.__startLogging, h2o.__stopLogging, h2o.__clearLogs, h2o.__openLog, h2o.__getLogPath

Examples

library(h2o)
h2o.__getLogPath("Command")
h2o.__changeLogPath(getwd(), "Command")
h2o.__getLogPath("Command")

h2o.__clearLogs Delete All H2O R Logs

Description

Clear all H2O R command and error response logs from local disk. Used primarily for debugging
purposes.

Usage

h2o.__clearLogs()

See Also

h2o.__startLogging, h2o.__stopLogging, h2o.__openLog, h2o.__getLogPath, h2o.__changeLogPath

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
h2o.__startLogging()
ausPath = system.file("extdata", "australia.csv", package="h2o")
australia.hex = h2o.importFile(localH2O, path = ausPath)
h2o.__stopLogging()
h2o.__clearLogs()
h2o.shutdown(localH2O)

h2o.__getLogPath 47

h2o.__getLogPath Get Path Where H2O R Logs are Saved

Description

Get the file path where H2O R command and error response logs are currently being saved.

Usage

h2o.__getLogPath(type)

Arguments

type Which log file’s path to get. Either "Command" for POST commands sent be-
tween R and H2O, or "Error" for errors returned by H2O in the HTTP response.

See Also

h2o.__startLogging, h2o.__stopLogging, h2o.__clearLogs, h2o.__openLog, h2o.__changeLogPath

Examples

library(h2o)
h2o.__getLogPath("Command")
h2o.__getLogPath("Error")

h2o.__openLog View H2O R Logs

Description

Open existing logs of H2O R POST commands and error responses on local disk. Used primarily
for debugging purposes.

Usage

h2o.__openLog(type)

Arguments

type Which log file to open. Either "Command" for POST commands sent between R
and H2O, or "Error" for errors returned by H2O in the HTTP response.

See Also

h2o.__startLogging, h2o.__stopLogging, h2o.__clearLogs, h2o.__getLogPath, h2o.__changeLogPath

48 h2o.__startLogging

Examples

Not run:
Skip running this to avoid windows being opened during R CMD check
library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)

h2o.__startLogging()
ausPath = system.file("extdata", "australia.csv", package="h2o")
australia.hex = h2o.importFile(localH2O, path = ausPath)
h2o.__stopLogging()

h2o.__openLog("Command")
h2o.__openLog("Error")
h2o.shutdown(localH2O)

End(Not run)

h2o.__startLogging Start Writing H2O R Logs

Description

Begin logging H2O R POST commands and error responses to local disk. Used primarily for
debugging purposes.

Usage

h2o.__startLogging()

See Also

h2o.__stopLogging, h2o.__clearLogs, h2o.__openLog, h2o.__getLogPath, h2o.__changeLogPath

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
h2o.__startLogging()
ausPath = system.file("extdata", "australia.csv", package="h2o")
australia.hex = h2o.importFile(localH2O, path = ausPath)
h2o.__stopLogging()
h2o.shutdown(localH2O)

h2o.__stopLogging 49

h2o.__stopLogging Stop Writing H2O R Logs

Description

Halt logging of H2O R POST commands and error responses to local disk. Used primarily for
debugging purposes.

Usage

h2o.__stopLogging()

See Also

h2o.__startLogging, h2o.__clearLogs, h2o.__openLog, h2o.__getLogPath, h2o.__changeLogPath

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
h2o.__startLogging()
ausPath = system.file("extdata", "australia.csv", package="h2o")
australia.hex = h2o.importFile(localH2O, path = ausPath)
h2o.__stopLogging()
h2o.shutdown(localH2O)

H2OClient-class Class "H2OClient"

Description

An object representing the server/local machine on which H2O is running.

Objects from the Class

Objects can be created by calls of the form new("H2OClient", ...)

Slots

ip: Object of class "character" representing the IP address of the H2O server.

port: Object of class "numeric" representing the port number of the H2O server.

50 H2ODRFGrid-class

Methods

h2o.importFile signature(object = "H2OClient", path = "character", + key = "character", parse = "logical"):
...

h2o.importFolder signature(object = "H2OClient", path = "character", + parse = "logical"):
...

h2o.importURL signature(object = "H2OClient", path = "character", + key = "character", parse = "logical"):
...

show signature(object = "H2OClient"): ...

Examples

showClass("H2OClient")

H2ODRFGrid-class Class "H2ODRFGrid"

Description

Object representing the models built by a H2O distributed random forest grid search on FluidVecs.

Objects from the Class

Objects can be created by calls of the form new("H2ODRFGrid", ...).

Slots

key: Object of class "character", representing the unique hex key that identifies the model.
data: Object of class "H2OParsedData", which is the input data used to build the model.
model: Object of class "list" containing "H2ODRFModel" objects representing the models re-

turned by the distributed random forest grid search.
sumtable: Object of class "list" containing summary statistics of all the models returned by the

distributed random forest grid search.

Extends

Class "H2OGrid", directly.

Methods

No methods defined with class "H2ODRFGrid" in the signature.

See Also

H2ODRFModel, h2o.randomForest

Examples

showClass("H2ODRFGrid")

H2ODRFModel-class 51

H2ODRFModel-class Class "H2ODRFModel"

Description

A class for representing random forest ensembles built on FluidVecs data.

Objects from the Class

Objects can be created by calls of the form new("H2ODRFModel", ...).

Slots

key: Object of class "character", representing the unique hex key that identifies the model.

data: Object of class "H2OParsedData", which is the input data used to build the model.

model: Object of class "list" containing the following elements:

• type: The type of the tree, which at this point must be classification.
• ntree: Number of trees grown.
• oob_err: Out of bag error rate.
• forest: A matrix giving the minimum, mean, and maximum of the tree depth and num-

ber of leaves.
• confusion: Confusion matrix of the prediction.

valid: Object of class "H2OParsedData", which is the data used for validating the model.

Extends

Class "H2OModel", directly.

Methods

show signature(object = "H2ODRFModel"): ...

See Also

h2o.randomForest

Examples

showClass("H2ODRFModel")

52 H2OGBMGrid-class

H2OGBMGrid-class Class "H2OGBMGrid"

Description

Object representing the models built by a H2O GBM grid search.

Objects from the Class

Objects can be created by calls of the form new("H2OGBMGrid", ...).

Slots

key: Object of class "character", representing the unique hex key that identifies the model.

data: Object of class "H2OParsedData", which is the input data used to build the model.

model: Object of class "list" containing "H2OGBMModel" objects representing the models re-
turned by the GBM grid search.

sumtable: Object of class "list" containing summary statistics of all the models returned by the
GBM grid search.

Extends

Class "H2OGrid", directly.

Methods

No methods defined with class "H2OGBMGrid" in the signature.

See Also

H2OGBMModel, h2o.gbm

Examples

showClass("H2OGBMGrid")

H2OGBMModel-class 53

H2OGBMModel-class Class "H2OGBMModel"

Description

A class for representing generalized boosted classification/regression models.

Objects from the Class

Objects can be created by calls of the form new("H2OGBMModel", ...).

Slots

key: Object of class "character", representing the unique hex key that identifies the model.

data: Object of class H2OParsedData, which is the input data used to build the model.

model: Object of class "list" containing the following elements:

• err: The mean-squared error in each tree.

• cm: (Only for classification). The confusion matrix of the response, with actual observa-
tions as rows and predicted values as columns.

valid: Object of class H2OParsedData, which is the dataset used to validate the model.

Extends

Class "H2OModel", directly.

Methods

show signature(object = "H2OGBMModel"): ...

See Also

h2o.gbm

Examples

showClass("H2OGBMModel")

54 H2OGLMGrid-class

H2OGLMGrid-class Class "H2OGLMGrid"

Description

Object representing the models built by a H2O GLM grid search on FluidVecs.

Objects from the Class

Objects can be created by calls of the form new("H2OGLMGrid", ...).

Slots

key: Object of class "character", representing the unique hex key that identifies the model.

data: Object of class "H2OParsedData", which is the input data used to build the model.

model: Object of class "list" containing "H2OGLMModel" objects representing the models re-
turned by the GLM (FluidVecs) grid search.

sumtable: Object of class "list" containing summary statistics of all the models returned by the
GLM (FluidVecs) grid search.

Extends

Class "H2OGrid", directly.

Methods

No methods defined with class "H2OGLMGrid" in the signature.

See Also

H2OGLMModel, h2o.glm

Examples

showClass("H2OGLMGrid")

H2OGLMGridVA-class 55

H2OGLMGridVA-class Class "H2OGLMGridVA"

Description

Object representing the models built by a H2O GLM grid search on ValueArray.

Objects from the Class

Objects can be created by calls of the form new("H2OGLMGridVA", ...).

Slots

key: Object of class "character", representing the unique hex key that identifies the model.

data: Object of class "H2OParsedDataVA", which is the input data used to build the model.

model: Object of class "list" containing "H2OGLMModelVA" objects representing the models re-
turned by the GLM (ValueArray) grid search.

sumtable: Object of class "list" containing summary statistics of all the models returned by the
GLM (ValueArray) grid search.

Extends

Class "H2OGridVA", directly.

Methods

show signature(object = "H2OGLMGridVA"): ...

See Also

H2OGLMModelVA, h2o.glm

Examples

showClass("H2OGLMGridVA")

56 H2OGLMModel-class

H2OGLMModel-class Class "H2OGLMModel"

Description

A class for representing generalized linear models.

Objects from the Class

Objects can be created by calls of the form new("H2OGLMModel", ...).

Slots

key: Object of class "character", representing the unique hex key that identifies the model.

data: Object of class H2OParsedData, which is the input data used to build the model.

model: Object of class "list" containing the following elements:

• coefficients: A named vector of the coefficients estimated in the model.
• rank: The numeric rank of the fitted linear model.
• family: The family of the error distribution.
• deviance: The deviance of the fitted model.
• aic: Akaike’s Information Criterion for the final computed model.
• null.deviance: The deviance for the null model.
• iter: Number of algorithm iterations to compute the model.
• df.residual: The residual degrees of freedom.
• df.null: The residual degrees of freedom for the null model.
• y: The response variable in the model.
• x: A vector of the predictor variable(s) in the model.

xval: List of objects of class "H2OGLMModel", representing the n-fold cross-validation models.

Extends

Class "H2OModel", directly.

Methods

show signature(object = "H2OGLMModel"): ...

See Also

h2o.glm

Examples

showClass("H2OGLMModel")

H2OGLMModelVA-class 57

H2OGLMModelVA-class Class "H2OGLMModelVA"

Description

A class for representing generalized linear models built on ValueArray data.

Objects from the Class

Objects can be created by calls of the form new("H2OGLMModelVA", ...).

Slots

key: Object of class "character", representing the unique hex key that identifies the model.

data: Object of class H2OParsedDataVA, which is the input data used to build the model.

model: Object of class "list" containing the following elements:

• coefficients: A named vector of the coefficients estimated in the model.
• rank: The numeric rank of the fitted linear model.
• family: The family of the error distribution.
• deviance: The deviance of the fitted model.
• aic: Akaike’s Information Criterion for the final computed model.
• null.deviance: The deviance for the null model.
• iter: Number of algorithm iterations to compute the model.
• df.residual: The residual degrees of freedom.
• df.null: The residual degrees of freedom for the null model.
• y: The response variable in the model.
• x: A vector of the predictor variable(s) in the model.

xval: List of objects of class "H2OGLMModelVA", representing the n-fold cross-validation models.

Extends

Class "H2OModelVA", directly.

Methods

show signature(object = "H2OGLMModelVA"): ...

See Also

h2o.glm

Examples

showClass("H2OGLMModelVA")

58 H2OGridVA-class

H2OGrid-class Class "H2OGrid"

Description

Object representing the models built by a H2O grid search algorithm on a FluidVecs dataset.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

key: Object of class "character", representing the unique hex key that identifies the model.

data: Object of class "H2OParsedData", which is the input data used to build the model.

model: Object of class "list" containing "H2OModel" objects representing the models returned
by the grid search algorithm.

sumtable: Object of class "list" containing summary statistics of all the models returned by the
grid search algorithm.

Methods

show signature(object = "H2OGrid"): ...

See Also

H2OGLMGrid, H2OKMeansGrid, H2ODRFGrid, H2OGBMGrid, H2ONNGrid

Examples

showClass("H2OGrid")

H2OGridVA-class Class "H2OGridVA"

Description

Object representing the models built by a H2O grid search algorithm on a ValueArray dataset.

Objects from the Class

A virtual Class: No objects may be created from it.

H2OKMeansGrid-class 59

Slots

key: Object of class "character", representing the unique hex key that identifies the model.

data: Object of class "H2OParsedDataVA", which is the input data used to build the model.

model: Object of class "list" containing "H2OModelVA" objects representing the models returned
by the grid search algorithm.

sumtable: Object of class "list" containing summary statistics of all the models returned by the
grid search algorithm.

Methods

show signature(object = "H2OGridVA"): ...

See Also

H2OGLMGridVA

Examples

showClass("H2OGridVA")

H2OKMeansGrid-class Class "H2OKMeansGrid"

Description

Object representing the models built by a H2O K-Means grid search on FluidVecs.

Objects from the Class

Objects can be created by calls of the form new("H2OKMeansGrid", ...).

Slots

key: Object of class "character", representing the unique hex key that identifies the model.

data: Object of class "H2OParsedData", which is the input data used to build the model.

model: Object of class "list" containing "H2OKMeansModel" objects representing the models re-
turned by the K-Means (FluidVecs) grid search.

sumtable: Object of class "list" containing summary statistics of all the models returned by the
K-Means (FluidVecs) grid search.

Extends

Class "H2OGrid", directly.

Methods

No methods defined with class "H2OKMeansGrid" in the signature.

60 H2OKMeansModel-class

See Also

H2OKMeansModel, h2o.kmeans

Examples

showClass("H2OKMeansGrid")

H2OKMeansModel-class Class "H2OKMeansModel"

Description

A class for representing k-means models.

Objects from the Class

Objects can be created by calls of the form new("H2OKMeansModel", ...).

Slots

key: Object of class "character", representing the unique hex key that identifies the model.

data: Object of class H2OParsedData, which is the input data used to build the model.

model: Object of class "list" containing the following elements:

• centers: A matrix of cluster centers.
• cluster: A H2OParsedData object containing the vector of integers (from 1:k), which

indicate the cluster to which each point is allocated.
• size: The number of points in each cluster.
• withinss: Vector of within-cluster sum of squares, with one component per cluster.
• tot.withinss: Total within-cluster sum of squares, i.e., sum(withinss).

Methods

show signature(object = "H2OKMeansModel"): ...

See Also

h2o.kmeans

Examples

showClass("H2OKMeansModel")

H2OKMeansModelVA-class 61

H2OKMeansModelVA-class

Class "H2OKMeansModelVA"

Description

A class for representing k-means clustering models built on ValueArray data.

Objects from the Class

Objects can be created by calls of the form new("H2OKMeansModelVA", ...).

Slots

key: Object of class "character", representing the unique hex key that identifies the model.

data: Object of class H2OParsedDataVA, which is the input data used to build the model.

model: Object of class "list" containing the following elements:

• cluster: A H2OParsedDataVA object, which contains the cluster assignment for each
observation in the input data.

• centers: A matrix of cluster centers.
• withinss: Within-cluster sum of squared errors for each cluster.
• tot.withinss: Sum total within-cluster sum of squared errors.
• size: Number of observations in each cluster.

Extends

Class "H2OModelVA", directly.

Methods

show signature(object = "H2OKMeansModelVA"): ...

See Also

h2o.kmeans

Examples

showClass("H2OKMeansModelVA")

62 H2OModelVA-class

H2OModel-class Class "H2OModel"

Description

Object representing the model built by an H2O algorithm on a FluidVecs dataset.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

key: Object of class "character", representing the unique hex key that identifies the model.
data: Object of class "H2OParsedData", which is the input data used to build the model.
model: Object of class "list" containing the characteristics of the model returned by the algo-

rithm.

Methods

No methods defined with class "H2OModel" in the signature.

See Also

H2OGLMModel, H2OKMeansModel, H2ODRFModel, H2OGBMModel, H2OPCAModel, H2ONNModel

Examples

showClass("H2OModel")

H2OModelVA-class Class "H2OModelVA"

Description

Object representing the model built by an H2O algorithm on a ValueArray dataset.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

key: Object of class "character", representing the unique hex key that identifies the model.
data: Object of class "H2OParsedDataVA", which is the input data used to build the model.
model: Object of class "list" containing the characteristics of the model returned by the algo-

rithm.

H2ONNGrid-class 63

Methods

No methods defined with class "H2OModelVA" in the signature.

See Also

H2OGLMModelVA, H2OKMeansModelVA, H2ORFModelVA

Examples

showClass("H2OModelVA")

H2ONNGrid-class Class "H2ONNGrid"

Description

Object representing the models built by a H2O neural networks grid search.

Objects from the Class

Objects can be created by calls of the form new("H2ONNGrid", ...).

Slots

key: Object of class "character", representing the unique hex key that identifies the model.

data: Object of class "H2OParsedData", which is the input data used to build the model.

model: Object of class "list" containing "H2ONNModel" objects representing the models returned
by the neural networks grid search.

sumtable: Object of class "list" containing summary statistics of all the models returned by the
neural networks grid search.

Extends

Class "H2OGrid", directly.

Methods

No methods defined with class "H2ONNGrid" in the signature.

See Also

H2ONNModel, h2o.nn

Examples

showClass("H2ONNGrid")

64 H2ONNModel-class

H2ONNModel-class Class "H2ONNModel"

Description

A class for representing neural network models.

Objects from the Class

Objects can be created by calls of the form new("H2ONNModel", ...).

Slots

key: Object of class "character", representing the unique hex key that identifies the model.

data: Object of class H2OParsedData, which is the input data used to build the model.

valid: Object of class "H2OParsedData", representing the validation data set.

model: Object of class "list" containing the following elements:

• confusion: The confusion matrix of the response, with actual observations as rows and
predicted values as columns.

• train_class_err: Classification error on the training dataset.
• train_sqr_err: Mean-squared error on the training dataset.
• train_cross_entropy: Cross-entropy on the training dataset.
• valid_class_err: Classification error on the validation dataset.
• valid_sqr_err: Mean-squared error on the validation dataset.
• valid_cross_entropy: Cross-entropy on the validation dataset.

Extends

Class "H2OModel", directly.

Methods

show signature(object = "H2ONNModel"): ...

See Also

h2o.nn

Examples

showClass("H2ONNModel")

H2OParsedData-class 65

H2OParsedData-class Class "H2OParsedData"

Description

A class for representing imported FluidVecs data sets that have been parsed.

Objects from the Class

Objects can be created by calls of the form new("H2OParsedData", ...).

Slots

h2o: Object of class "H2OClient", which is the client object that was passed into the function call.

key: Object of class "character", which is the hex key assigned to the imported data.

logic: Object of class "logical", indicating whether the "H2OParsedData" object represents
logical data

Methods

- signature(e1 = "H2OParsedData", e2 = "H2OParsedData"): ...

- signature(e1 = "H2OParsedData", e2 = "numeric"): ...

- signature(e1 = "numeric", e2 = "H2OParsedData"): ...

! signature(x = "H2OParsedData"): ...

!= signature(e1 = "H2OParsedData", e2 = "H2OParsedData"): ...

!= signature(e1 = "H2OParsedData", e2 = "numeric"): ...

!= signature(e1 = "numeric", e2 = "H2OParsedData"): ...

[signature(x = "H2OParsedData"): ...

[<- signature(x = "H2OParsedData"): ...

* signature(e1 = "H2OParsedData", e2 = "H2OParsedData"): ...

* signature(e1 = "H2OParsedData", e2 = "numeric"): ...

* signature(e1 = "numeric", e2 = "H2OParsedData"): ...

/ signature(e1 = "H2OParsedData", e2 = "H2OParsedData"): ...

/ signature(e1 = "H2OParsedData", e2 = "numeric"): ...

/ signature(e1 = "numeric", e2 = "H2OParsedData"): ...

& signature(e1 = "H2OParsedData", e2 = "H2OParsedData"): ...

& signature(e1 = "H2OParsedData", e2 = "numeric"): ...

& signature(e1 = "numeric", e2 = "H2OParsedData"): ...

%% signature(e1 = "H2OParsedData", e2 = "H2OParsedData"): ...

%% signature(e1 = "H2OParsedData", e2 = "numeric"): ...

66 H2OParsedData-class

%% signature(e1 = "numeric", e2 = "H2OParsedData"): ...

+ signature(e1 = "H2OParsedData", e2 = "H2OParsedData"): ...

+ signature(e1 = "H2OParsedData", e2 = "numeric"): ...

+ signature(e1 = "numeric", e2 = "H2OParsedData"): ...

< signature(e1 = "H2OParsedData", e2 = "H2OParsedData"): ...

< signature(e1 = "H2OParsedData", e2 = "numeric"): ...

< signature(e1 = "numeric", e2 = "H2OParsedData"): ...

<= signature(e1 = "H2OParsedData", e2 = "H2OParsedData"): ...

<= signature(e1 = "H2OParsedData", e2 = "numeric"): ...

<= signature(e1 = "numeric", e2 = "H2OParsedData"): ...

== signature(e1 = "H2OParsedData", e2 = "H2OParsedData"): ...

== signature(e1 = "H2OParsedData", e2 = "numeric"): ...

== signature(e1 = "numeric", e2 = "H2OParsedData"): ...

> signature(e1 = "H2OParsedData", e2 = "H2OParsedData"): ...

> signature(e1 = "H2OParsedData", e2 = "numeric"): ...

> signature(e1 = "numeric", e2 = "H2OParsedData"): ...

>= signature(e1 = "H2OParsedData", e2 = "H2OParsedData"): ...

>= signature(e1 = "H2OParsedData", e2 = "numeric"): ...

>= signature(e1 = "numeric", e2 = "H2OParsedData"): ...

| signature(e1 = "H2OParsedData", e2 = "H2OParsedData"): ...

| signature(e1 = "H2OParsedData", e2 = "numeric"): ...

| signature(e1 = "numeric", e2 = "H2OParsedData"): ...

$ signature(x = "H2OParsedData"): ...

$<- signature(x = "H2OParsedData"): ...

abs signature(x = "H2OParsedData"): ...

apply signature(X = "H2OParsedData"): ...

as.data.frame signature(x = "H2OParsedData"): ...

as.factor signature(x = "H2OParsedData"): ...

ceiling signature(x = "H2OParsedData"): ...

colMeans signature(x = "H2OParsedData"): ...

colnames signature(x = "H2OParsedData"): ...

colnames<- signature(x = "H2OParsedData", value = "character"): ...

colnames<- signature(x = "H2OParsedData", value = "H2OParsedData"): ...

dim signature(x = "H2OParsedData"): ...

dim<- signature(x = "H2OParsedData"): ...

exp signature(x = "H2OParsedData"): ...

floor signature(x = "H2OParsedData"): ...

H2OParsedData-class 67

h2o.cut signature(x = "H2OParsedData", breaks = "numeric"): ...

h2o<- signature(x = "H2OParsedData", value = "H2OParsedData"): ...

h2o<- signature(x = "H2OParsedData", value = "numeric"): ...

head signature(x = "H2OParsedData"): ...

histograms signature(object = "H2OParsedData"): ...

ifelse signature(test = "H2OParsedData"): ...

is.factor signature(x = "H2OParsedData"): ...

is.na signature(x = "H2OParsedData"): ...

length signature(x = "H2OParsedData"): ...

levels signature(x = "H2OParsedData"): ...

log signature(x = "H2OParsedData"): ...

names signature(x = "H2OParsedData"): ...

names<- signature(x = "H2OParsedData"): ...

ncol signature(x = "H2OParsedData"): ...

nrow signature(x = "H2OParsedData"): ...

quantile signature(x = "H2OParsedData"): ...

range signature(x = "H2OParsedData"): ...

sd signature(x = "H2OParsedData"): ...

show signature(object = "H2OParsedData"): ...

sign signature(x = "H2OParsedData"): ...

sqrt signature(x = "H2OParsedData"): ...

summary signature(object = "H2OParsedData"): ...

tail signature(x = "H2OParsedData"): ...

See Also

H2ORawData, h2o.parseRaw

Examples

showClass("H2OParsedData")

68 H2OParsedDataVA-class

H2OParsedDataVA-class Class "H2OParsedDataVA"

Description

A class for representing imported ValueArray data sets that have been parsed.

Objects from the Class

Objects can be created by calls of the form new("H2OParsedDataVA", ...).

Slots

h2o: Object of class "H2OClient", which is the client object that was passed into the function call.

key: Object of class "character", which is the hex key assigned to the imported data.

logic: Object of class "logical", indicating whether the "H2OParsedDataVA" object represents
logical data

Extends

Class "H2OParsedData", directly.

Methods

colnames signature(x = "H2OParsedDataVA"): ...

colnames<- signature(x = "H2OParsedDataVA", value = "character"): ...

colnames<- signature(x = "H2OParsedDataVA", value = "H2OParsedDataVA"): ...

dim signature(x = "H2OParsedDataVA"): ...

head signature(x = "H2OParsedDataVA"): ...

names signature(x = "H2OParsedDataVA"): ...

names<- signature(x = "H2OParsedDataVA"): ...

ncol signature(x = "H2OParsedDataVA"): ...

nrow signature(x = "H2OParsedDataVA"): ...

show signature(object = "H2OParsedDataVA"): ...

summary signature(object = "H2OParsedDataVA"): ...

tail signature(x = "H2OParsedDataVA"): ...

See Also

H2ORawDataVA, h2o.parseRaw.VA

Examples

showClass("H2OParsedDataVA")

H2OPCAModel-class 69

H2OPCAModel-class Class "H2OPCAModel"

Description

A class for representing principal components analysis results.

Objects from the Class

Objects can be created by calls of the form new("H2OPCAModel", ...).

Slots

key: Object of class "character", representing the unique hex key that identifies the model.

data: Object of class H2OParsedData, which is the input data used to build the model.

model: Object of class "list" containing the following elements:

• standardized: A logical value indicating whether the data was centered and scaled.
• sdev: The standard deviations of the principal components (i.e., the square roots of the

eigenvalues of the covariance/correlation matrix).
• rotation: The matrix of variable loadings (i.e., a matrix whose columns contain the

eigenvectors).

Extends

Class "H2OModel", directly.

Methods

show signature(object = "H2OPCAModel"): ...

plot signature(x = "H2OPCAModel", y, ...): ...

summary signature(object = "H2OPCAModel"): ...

See Also

h2o.prcomp

Examples

showClass("H2OPCAModel")

70 H2ORawDataVA-class

H2ORawData-class Class "H2ORawData"

Description

A class for representing imported FluidVecs data sets that have not been parsed.

Objects from the Class

Objects can be created by calls of the form new("H2ORawData", ...).

Slots

h2o: Object of class "H2OClient", which is the client object that was passed into the function call.

key: Object of class "character", which is the hex key assigned to the imported data.

Methods

h2o.parseRaw signature(data = "H2OParsedData", key = "character", header = "logical" sep = "character", col.names = "H2OParsedData"):
...

show signature(object = "H2ORawData"): ...

See Also

H2OParsedData

Examples

showClass("H2ORawData")

H2ORawDataVA-class Class "H2ORawDataVA"

Description

A class for representing imported ValueArray data sets that have not been parsed.

Objects from the Class

Objects can be created by calls of the form new("H2ORawDataVA", ...).

Slots

h2o: Object of class "H2OClient", which is the client object that was passed into the function call.

key: Object of class "character", which is the hex key assigned to the imported data.

H2ORFModelVA-class 71

Methods

h2o.parseRaw.VA signature(data = "H2OParsedDataVA", key = "character", header = "logical" sep = "character", col.names = "H2OParsedDataVA"):
...

show signature(object = "H2ORawDataVA"): ...

See Also

H2OParsedDataVA

Examples

showClass("H2ORawDataVA")

H2ORFModelVA-class Class "H2ORFModelVA"

Description

A class for representing random forest ensembles built on ValueArray data.

Objects from the Class

Objects can be created by calls of the form new("H2ORFModelVA", ...).

Slots

key: Object of class "character", representing the unique hex key that identifies the model.

data: Object of class H2OParsedDataVA, which is the input data used to build the model.

model: Object of class "list" containing the following elements:

• type: The type of the tree, which at this point must be classification.
• ntree: Number of trees grown.
• oob_err: Out of bag error rate.
• forest: A matrix giving the minimum, mean, and maximum of the tree depth and num-

ber of leaves.
• confusion: Confusion matrix of the prediction.

Extends

Class "H2OModelVA", directly.

Methods

show signature(object = "H2ORFModelVA"): ...

See Also

h2o.randomForest

72 head

Examples

showClass("H2ORFModelVA")

head Return the First or Last Part of a H2O Dataset

Description

Returns the first or last rows of an H2O parsed data object.

Usage

S3 method for class ’H2OParsedData’
head(x, n = 6L, ...)
S3 method for class ’H2OParsedData’
tail(x, n = 6L, ...)
S3 method for class ’H2OParsedDataVA’
head(x, n = 6L, ...)
S3 method for class ’H2OParsedDataVA’
tail(x, n = 6L, ...)

Arguments

x An H2O parsed data object.

n (Optional) A single integer. If positive, number of rows in x to return. If nega-
tive, all but the n first/last number of rows in x.

... Arguments to be passed to or from other methods. (Currently unimplemented).

Value

A data frame containing the first or last n rows of an H2OParsedData object.

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
ausPath = system.file("extdata", "australia.csv", package="h2o")
australia.hex = h2o.importFile(localH2O, path = ausPath)
head(australia.hex, 10)
tail(australia.hex, 10)
h2o.shutdown(localH2O)

ifelse 73

ifelse Applies conditional statements to an H2OParsedData object.

Description

Applies conditional statements to numeric vectors in H2O parsed data objects when the data are
numeric.

Usage

ifelse(test, yes, no)

Arguments

test A logical description of the condition to be met (>, <, =, etc...)

yes The value to return if the condition is TRUE.

no The value to return if the condition is FALSE.

Details

Only numeric values can be tested, and only numeric results can be returned for either condition.
Categorical data is not currently supported for this funciton and returned values cannot be categori-
cal in nature.

Value

Retruns a vector of new values matching the conditions stated in the ifelse call.

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
ausPath = system.file("extdata", "australia.csv", package="h2o")
australia.hex = h2o.importFile(localH2O, path = ausPath)
australia.hex[,9] <- ifelse(australia.hex[,3] < 279.9, 1, 0)
summary(australia.hex)
h2o.shutdown(localH2O)

74 levels

is.factor Tells user if given column is categorical data or not.

Description

Tells user if given column is categorical data or not.

Usage

is.factor(x)

Arguments

x Columns of an H2O parsed data object.

Value

A logical value TRUE if column contains categorical data, FALSE otherwise.

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
prosPath = system.file("extdata", "prostate.csv", package="h2o")
prostate.hex = h2o.importFile(localH2O, path = prosPath)
prostate.hex[,4]=as.factor(prostate.hex[,4])
is.factor(prostate.hex[,4])
is.factor(prostate.hex[,3])
h2o.shutdown(localH2O)

levels Levels of Categorical Data

Description

Returns a list of the unique values found in a column of categorical data.

Usage

levels(x)

Arguments

x Column of categorical data in an H2OParsedData object.

mean.H2OParsedData 75

Value

Returns a list containing one entry for each unique value found in the column of categorical data.

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
irisPath = system.file("extdata", "iris.csv", package="h2o")
iris.hex = h2o.importFile(localH2O, path = irisPath, key = "iris.hex")
levels(iris.hex[,5])
h2o.shutdown(localH2O)

mean.H2OParsedData Arithmetic Mean of H2O Dataset

Description

mean.H2OParsedData, a method for the mean generic. Calculate the mean of each numeric column
in a H2O dataset.

Usage

S3 method for class ’H2OParsedData’
mean(x, trim = 0, na.rm = FALSE, ...)

Arguments

x An H2OParsedData object.

trim (The fraction (0 to 0.5) of observations to trim from each end of x before the
mean is computed. (Currently unimplemented).

na.rm Logical value indicating whether NA or missing values should be stripped before
the computation.

... Potential further arguments. (Currently unimplemented).

Value

An H2OParsedData object of scalar numeric value representing the arithmetic mean of each nu-
meric column of x. If x is not logical or numeric, then NA_real_ is returned, with a warning.

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
prosPath = system.file("extdata", "prostate.csv", package="h2o")
prostate.hex = h2o.importFile(localH2O, path = prosPath)
mean(prostate.hex$AGE)
h2o.shutdown(localH2O)

76 quantile.H2OParsedData

nrow The Number of Rows/Columns of a H2O Dataset

Description

Returns a count of the number of rows in an H2OParsedData object.

Usage

nrow(x)
ncol(x)

Arguments

x An H2OParsedData object.

Value

An integer of length 1 indicating the number of rows or columns in the dataset.

See Also

dim which returns all dimensions

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
irisPath = system.file("extdata", "iris.csv", package="h2o")
iris.hex = h2o.importFile(localH2O, path = irisPath, key = "iris.hex")
nrow(iris.hex)
ncol(iris.hex)
h2o.shutdown(localH2O)

quantile.H2OParsedData

Obtain and display quantiles for H2O parsed data.

Description

quantile.H2OParsedData, a method for the quantile generic. Obtain and return quantiles for an
H2OParsedData object.

Usage

S3 method for class ’H2OParsedData’
quantile(x, probs = seq(0, 1, 0.25), na.rm = FALSE, names = TRUE, ...)

screeplot.H2OPCAModel 77

Arguments

x An H2OParsedData object with a single numeric column.

probs numeric vector of probabilities with values in [0,1].

na.rm logical; if true, any NA and NaN’s are removed from x before the quantiles are
computed.

names logical; if true, the result has a names attribute.

... further arguments passed to or from other methods.

Details

Note that H2O parsed data objects can be quite large, and are therefore often distributed across
multiple nodes in an H2O cluster. As a result, percentiles at the 1st, 5th, 10th, 25th, 33, 50, 66, 75,
90, 95, 99th, and other values cannot be returned. This range includes the 1st quantile at the 25th
percentile, median at the 50th percentile, and 3rd quantile at the 75th percentile.

Value

A vector describing the percentiles at the given cutoffs for the H2OParsedData object.

Examples

Request quantiles for an H2O parsed data set:
library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
prosPath = system.file("extdata", "prostate.csv", package="h2o")
prostate.hex = h2o.importFile(localH2O, path = prosPath)

Request quantiles for a subset of columns in an H2O parsed data set
quantile(prostate.hex[,3])
for(i in 1:ncol(prostate.hex))

quantile(prostate.hex[,i])
h2o.shutdown(localH2O)

screeplot.H2OPCAModel Summarizes the columns of an H2O parsed FluidVecs data set.

Description

screeplot.H2OPCAModel, a method for the screeplot generic. Plots the variances against the
number of the principal component generated by h2o.prcomp.

Usage

S3 method for class ’H2OPCAModel’
screeplot(x, npcs = min(10, length(x@model$sdev)), type = "barplot",
main = paste("h2o.prcomp(", x@data@key, ")", sep=""), ...)

78 sd

Arguments

x An H2OPCAModel object.

npcs Number of components to be plotted.

type Type of plot, must be either "barplot" or "lines".

main Title of the plot.

... Additional parameters to be passed to the plotting function.

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
ausPath = system.file("extdata", "australia.csv", package = "h2o")
australia.hex = h2o.importFile(localH2O, path = ausPath)
australia.pca = h2o.prcomp(data = australia.hex, standardize = TRUE)
screeplot(australia.pca)
h2o.shutdown(localH2O)

sd Standard Deviation of a Numeric Column of H2O Data

Description

Calculates the standard deviation of a H2OParsedData column of continuous real valued data.

Usage

sd(x, na.rm = FALSE)

Arguments

x An H2OParsedData object containing numeric data.

na.rm Logical value where FALSE does not remove NA’s in the calculation and TRUE
removes NA’s in the calculation.

Value

Returns a vector of values of the standard deviations for the requested columns.

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
irisPath = system.file("extdata", "iris.csv", package="h2o")
iris.hex = h2o.importFile(localH2O, path = irisPath, key = "iris.hex")
sd(iris.hex[,4])
h2o.shutdown(localH2O)

str 79

str Display the Structure of a H2O Dataset

Description

A method for the str generic. Obtain information about H2O parsed data objects and their structure.

Usage

S3 method for class ’H2OParsedData’
str(object, ...)
S3 method for class ’H2OParsedDataVA’
str(object, ...)

Arguments

object An H2OParsedData object.

... Potential further arguments. (Currently unimplemented).

Value

A table listing summary information including variable names, types (for example, enum or nu-
meric), count of observations and columns.

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
prosPath = system.file("extdata", "prostate.csv", package="h2o")
prostate.hex = h2o.importFile(localH2O, path = prosPath)
str(prostate.hex)
h2o.shutdown(localH2O)

sum Sum of Numeric Values

Description

Calculates the sum of all the values present in its arguments. This method extends the sum generic
to deal with H2OParsedData objects.

Usage

sum(..., na.rm = FALSE)

80 summary

Arguments

... Numeric, complex, logical or H2OParsedData arguments.

na.rm Logical value where FALSE does not remove NA’s in the calculation and TRUE
removes NA’s in the calculation.

Value

Returns the sum over all the input arguments. For a H2OParsedData object, the sum is taken over
all entries in the dataset. An error will occur if any of those entries is non-numeric.

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
ausPath = system.file("extdata", "australia.csv", package="h2o")
australia.hex = h2o.importFile(localH2O, path = ausPath, key = "australia.hex")
sum(australia.hex)
sum(c(400, 1234, -1250), TRUE, australia.hex[,1:4])
h2o.shutdown(localH2O)

summary Summarizes the columns of a H2O Dataset

Description

A method for the summary generic. Summarizes the columns of an H2O parsed object or subset of
columns and rows using vector notation (e.g. dataset[row, col])

Usage

S3 method for class ’H2OParsedData’
summary(object, ...)
S3 method for class ’H2OParsedDataVA’
summary(object, ...)

Arguments

object An H2OParsedData object.

... Additional arguments affecting the summary produced. (Currently unimple-
mented).

Value

A matrix displaying the minimum, 1st quartile, median, mean, 3rd quartile and maximum for each
numeric column included in the request call,a summary of the levels and member counts for each
factor column. and a the levels and member counts of the elements in factor columns for all of the
columns specified in the summary call.

summary.H2OPCAModel 81

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
prosPath = system.file("extdata", "prostate.csv", package="h2o")
prostate.hex = h2o.importFile(localH2O, path = prosPath)
summary(prostate.hex)
summary(prostate.hex$GLEASON)
summary(prostate.hex[,4:6])
h2o.shutdown(localH2O)

summary.H2OPCAModel Summarizes the H2O PCA Model

Description

summary.H2OPCAModel, a method for the summary generic. Summarizes the importance of each
principal component returned by h2o.prcomp.

Usage

S3 method for class ’H2OPCAModel’
summary(object, ...)

Arguments

object An H2OPCAModel object.

... Additional arguments affecting the summary produced. (Currently unimple-
mented).

Value

A matrix displaying the standard deviation, proportion of variance explained and cumulative pro-
portion of variance explained by each principal component.

Examples

library(h2o)
localH2O = h2o.init(ip = "localhost", port = 54321, startH2O = TRUE)
ausPath = system.file("extdata", "australia.csv", package="h2o")
australia.hex = h2o.importFile(localH2O, path = ausPath)
australia.pca = h2o.prcomp(data = australia.hex, standardize = TRUE)
summary(australia.pca)
h2o.shutdown(localH2O)

	h2o-package
	apply
	as.data.frame.H2OParsedData
	as.factor
	as.h2o
	colnames
	Extremes
	h2o.anyFactor
	h2o.assign
	h2o.clusterInfo
	h2o.clusterStatus
	h2o.confusionMatrix
	h2o.cut
	h2o.downloadAllLogs
	h2o.downloadCSV
	h2o.exportHDFS
	h2o.gbm
	h2o.glm
	h2o.importFile
	h2o.importFolder
	h2o.importHDFS
	h2o.importURL
	h2o.init
	h2o.kmeans
	h2o.logAndEcho
	h2o.ls
	h2o.nn
	h2o.parseRaw
	h2o.pcr
	h2o.prcomp
	h2o.predict
	h2o.randomForest
	h2o.rm
	h2o.runif
	h2o.shutdown
	h2o.table
	h2o.uploadFile
	h2o.__changeLogPath
	h2o.__clearLogs
	h2o.__getLogPath
	h2o.__openLog
	h2o.__startLogging
	h2o.__stopLogging
	H2OClient-class
	H2ODRFGrid-class
	H2ODRFModel-class
	H2OGBMGrid-class
	H2OGBMModel-class
	H2OGLMGrid-class
	H2OGLMGridVA-class
	H2OGLMModel-class
	H2OGLMModelVA-class
	H2OGrid-class
	H2OGridVA-class
	H2OKMeansGrid-class
	H2OKMeansModel-class
	H2OKMeansModelVA-class
	H2OModel-class
	H2OModelVA-class
	H2ONNGrid-class
	H2ONNModel-class
	H2OParsedData-class
	H2OParsedDataVA-class
	H2OPCAModel-class
	H2ORawData-class
	H2ORawDataVA-class
	H2ORFModelVA-class
	head
	ifelse
	is.factor
	levels
	mean.H2OParsedData
	nrow
	quantile.H2OParsedData
	screeplot.H2OPCAModel
	sd
	str
	sum
	summary
	summary.H2OPCAModel

