Package ’h2¢o’

January 30, 2015

R topics documented:

h2o-package e 1
AAA_DownloadAndStartBeforeExamples 0. 2
apply . . e e 3
as.data.frame.H2OParsedData 3
as.Date.H20ParsedData 4
as.factor e e 5
as.h20 . . oL e e e 6
as.matrix. H20ParsedData 7
as.table. H2OParsedData 7
cbind.H20OParsedData e 8
COINAMES e e e e e e e e e e e e e e 9
data.frameORnull-class 9
diff H2OParsedData e e 10
doNotCallThisMethod...Unsupported 10
Extremes e e e 11
h2o.addFunction 12
h2c.anomaly 13
h2o.anyFactor 14
h20.assign e 14
h2o.clearLogs L e 15
h2o.clusterInfo 16
h2o.clusterStatus e e e e e e e e e 16
h2o.confusionMatrix 17
h2o.coxph 18
h2o.createFrame 20
h2o.cut e e 21
h2o.ddply e 22
h2o.deepfeatures L e 23
h2o.deeplearning L 24
h2o.downloadAlILOgS e e 28
h2o.downloadCSV 28
h20.8XEC e 29
h2o.exportFile L 30
h20.gains 31
h2o.gapStatistic L e 32
h2o.gbm e 33
h2o.getFrame 35

R topics documented:

h2o.getGLMLambdaModel L 36
h2o.getLogPath e 37
h2o.getModel 37
h2o.getTimezone e 38
h2o.glm L 39
h2o.gsub L 42
h20.hitRatio 43
h2o.ignoreColumns 44
h2o.importFile 45
h2o.importFolder 46
h2o.importHDFS 47
h2o.importURL e 49
h2o0dmpute e e e e e e e 50
h204nit e e e e e 51
h2o.insertMissingValues L o 53
h2o.nteraction L 54
h2o.kmeans 55
h2o.distTimezones e 56
h2o.doadAll e 57
h2o.JoadModel e e e 58
h2o.JogAndEcho 59
h20.0s . . . e e e 59
h2o.makeGLMModel 60
h2o.month e 61
h2o.mse e 61
h2o.naiveBayes 62
h2o.nFoldExtractor 63
h2o.0openlog 64
h20.0order 65
h2o.parseRaw 66
h2o.pcr . . 67
h2o.performance e e e 69
h2o.prcomp 70
h2o.predict L 71
h2o.randomForest 72
h2o.rebalance 74
h2o.removeVecs L 75
h2o.rm L e 76
h2orunif. e e e e 77
h2o.sample e e e e e 78
h2o.saveAll L e 78
h2o.saveModel e e e e 79
h2o.setLogPath e 80
h2o.setTimezone e 81
h2o.shutdown L 82
h20.SpeeDRF e 83
h2o.splitFrame L 85
h2o.startlogging 85
h20.stopLog@ing e e e e e 86
h2o0.sub . . . e 86
h2o.table. 87

h2o.uploadFile e 88

R topics documented: 3

h2o.year 89
H20Client-class e e e e e e e e 90
H20DeepLearningGrid-class 90
H20DeepLearningModel-class L o 91
H20DRFGrid-class e e e e e e e 92
H20DRFModel-class e 93
H20GapStatModel-class e 94
H20GBMGrid-class e e 94
H20GBMModel-class e e e 95
H20GLMGrid-class e e e e e e 96
H20GLMModel-class e e 97
H20GLMModelList-class e e e 98
H20Grid-class e e e e e e e e 98
H20KMeansGrid-class e 99
H20KMeansModel-class i i e e e 100
H20Model-class e e e e e e e 100
H20NBModel-class e e 101
H20ParsedData-class e e e e 102
H20PCAModel-class e 105
H2OPerfModel-class e 106
H20RawData-class e e e 107
H20SpeeDRFGrid-class 107
H20SpeeDRFModel-class 108
head e e e 109
hist H20OParsedData 109
ifelse e e e 110
1s.factor L e e e e e e e 111
levels e 112
mean.H2OParsedData 112
NIOW & . o v v i e 113
plot H20GapStatModel 114
plotH20PerfModel e 114
quantile H2OParsedData Lo 115
rbind.H2OParsedData 116
Revalue e e e 117
Revalue.H20ParsedData 117
Round e e 118
screeplot. H2ZOPCAModel 119
SA . s 120
] o 120
SIISPIit © . . e e e 121
strsplit H2OParsedData L 121
] 10 0 122
SUIMMATY .« . v v v v v e e v e e e e e e e e e e e e e e e e 123
summary.H20GapStatModel 124
summary.H2ZOPCAModel e 124
OIOWET e e e 125
tolower.H20ParsedData 125
TOUPPET .« v v e o e e e e e e e e e e e e e 126
toupper.H20ParsedData 126
M . . . e e e e e e e e e e e e e e e 127

unique.H2OParsedData L 128

4 h2o-package

which 129
zzz_ShutdownAfterExamples 129
h2o-package H20 R Interface
Description

This is a package for running H20O via its REST API from within R. To communicate with a H20
instance, the version of the R package must match the version of H20. When connecting to a new
H2O cluster, it is necessary to re-run the initializer.

Details

Package: h2o0

Type: Package
Version: 2.9.0.99999
Date: 2014-05-15

License: Apache License (== 2.0)
Depends: R (>=2.13.0), RCurl, rjson, statmod, tools, methods, utils

This package allows the user to run basic H20 commands using R commands. In order to use it,
you must first have H20 running (See How to Start H20). To run H20 on your local machine, call
h2o.1init without any arguments, and H20 will be automatically launched on http://127.0.0.1:
54321, where the IP is "127.0.0.1" and the port is 54321. If H2O is running on a cluster, you must
provide the IP and port of the remote machine as arguments to the h2o.init() call.

H20 supports a number of standard statistical models, such as GLM, K-means, and Random Forest
classification. For example, to run GLM, call h20.glm with the H20 parsed data and parameters
(response variable, error distribution, etc...) as arguments. (The operation will be done on the server
associated with the data object where H20O is running, not within the R environment).

Note that no actual data is stored in the R workspace; and no actual work is carried out by R. R only
saves the named objects, which uniquely identify the data set, model, etc on the server. When the
user makes a request, R queries the server via the REST API, which returns a JSON file with the
relevant information that R then displays in the console.

Author(s)

Angqi Fu, Tom Kraljevic and Petr Maj, with contributions from the Oxdata team

Maintainer: Ariel Rao <ariel @(0xdata.com>

References

* Oxdata Homepage
* H20 Documentation

e H20 on Github

http://docs.0xdata.com/newuser/quickstart_jar.html
http://127.0.0.1:54321
http://127.0.0.1:54321
http://www.0xdata.com
http://docs.0xdata.com
https://github.com/0xdata/h2o

AAA_DownloadAndStartBeforeExamples 5

Examples

Check connection with H20 and ensure local H20 R package matches server version.

Optionally, ask for startH20 to start H20 if it's not already running.

Note that for startH20 to work, the IP must be 127.0.0.1 or localhost with port 54321.
library(h2o)

localH20 = h2o.init(ip = "127.0.0.1", port = 54321, startH20 = TRUE)

Import iris dataset into H20 and print summary

irisPath = system.file("extdata”, "iris.csv"”, package = "h20")
iris.hex = h2o.importFile(localH20, path = irisPath, key = "iris.hex")
summary (iris.hex)

Attach H20 R package and run GLM demo
??h20

demo(package = "h20")

demo (h2o0.prcomp)

AAA_DownloadAndStartBeforeExamples
Download H2O jar file and Start H20 cloud before examples run (for
H20 developers only)

Description

AAA_DownloadAndStartBeforeExamples, download H2O jar file and start H2O cloud before ex-
amples run. This is only relevant for H20 developers during the building of the CRAN package.

Examples

-- CRAN examples begin --
library(h2o)

localH20 = h2o.init()

-- CRAN examples end --

apply Applies a function over an H20 parsed data object.

Description

Applies a function over an H20 parsed data object (an array).

Usage
apply (X, MARGIN, FUN, ...)
Arguments
X An H20ParsedData object.
MARGIN The margin along wich the function should be applied
FUN The function to be applied by H20.

Optional arguments to FUN. (Currently unimplemented).

6 as.data.frame.H2OParsedData

Value

Produces a new H20ParsedData of the output of the applied function. The output is stored in H20
so that it can be used in subsequent H20 processes.

Examples
library(h2o)
localH20 = h2o.init()
irisPath = system.file("extdata”, "iris.csv", package="h20")

iris.hex = h2o.importFile(localH20, path = irisPath, key = "iris.hex")
summary (apply(iris.hex, 1, sum))

as.data.frame.H20ParsedData
Converts a parsed H20 object to a data frame.

Description

Convert an H20ParsedData object to a data frame, which allows subsequent data frame operations
within the R environment.

Usage
S3 method for class 'H20ParsedData’
as.data.frame(x, ...)

Arguments
X An H20ParsedData object.

Additional arguments to be passed to or from methods.

Value

Returns a data frame in the R environment. Note that this call establishes the data set in the R
environment, and subsequent operations on the data frame take place within R, not H20. When
data are large, users may experience

Examples

library(h20o)

localH20 = h2o.init()

prosPath = system.file("extdata”, "prostate.csv”, package="h20")
prostate.hex = h2o.importFile(localH20, path = prosPath)
prostate.data.frame <- as.data.frame(prostate.hex)

summary (prostate.data. frame)

head(prostate.data.frame)

as.Date.H2OParsedData 7

as.Date.H20ParsedData Converts a column from factor to date

Description

as.Date.H20ParsedData, Converts a column from factor to date.

Usage
S3 method for class 'H20ParsedData’
as.Date(x, format, ...)
Arguments
X A factor column in an object of class H20ParsedData, or data frame to be con-
verted.
format A character string.

Additional arguments to pass to the as.Date method

Details

Supports all parse tokens specified for strptime, except %u, %U, %w, %W, %X and %@Sn. Format
also supports local variables that evaluate to a string.

Value

Returns a column of dates stored as the number of milliseconds since the start of January 1, 1970.
Negative numbers represent the number of seconds before this time, and positive numbers represent
the number of seconds afterwards. NA values are preserved.

Note

Note that resulting values are in milliseconds and not the seconds stored by the "POSIXct" class.

Examples

library(h20o)

localH20 = h2o.init()

dates = c("Fri Jan 10 00:00:00 1969 -0800",
"Tue Jan 10 04:00:00 2068 -0800",
"Mon Dec 30 01:00:00 2002 -0800",
"Wed Jan 1 12:00:00 2003 -0800")

df = data.frame(dates)

hdf = as.h2o0(localH20, df, "hdf", TRUE)

hdf$dates = as.Date(hdf$dates, "%c %z")

hdf$dates

8 as.h2o

as.factor Converts a column from numeric to factor

Description

Specify a column type to be factor (also called categorical or enumerative), rather than numeric.

Usage

as.factor(x)

Arguments

X A column in an object of class H20ParsedData, or data frame.

Value

Returns the original object of class H20ParsedData, with the requested column specified as a factor,
rather than numeric.

Examples

library(h20)

localH20 = h2o0.init()

prosPath = system.file("extdata”, "prostate.csv”, package="h20")
prostate.hex = h2o.importFile(localH20, path = prosPath)
prostate.hex[,4] = as.factor(prostate.hex[,4])

summary (prostate.hex)

as.h2o Converts an R object to an H20 object

Description

Convert an R object to an H20 object, copy contents of the object to the running instance of H20

Usage
as.h2o(client, object, key = "", header, sep = "")
Arguments
client The h2o0.init object that facilitates communication between R and H20.
object The object in the R environment to be converted to an H20 object.
key (Optional) A reference assigned to the object in the instance of H20 (the key
part of the key-value store, where the value is the R object to be converted.)
header (Optional) A logical value indicating whether the first line of the file contains
column headers. If left empty, the parser will try to automatically detect this.
sep (Optional) The field separator character. Values on each line of the file are sep-

nn

arated by this character. If sep = "", the parse

as.matrix. H2OParsedData 9

Details

The R object to be converted to an H20 object should be named so that it can be used in subsequent
analysis. Also note that the R object is converted to a parsed H20 data object, and will be treated
as a data frame by H20 in subsequent analysis.

Value

Converts an R object to an H20 Parsed data object.

Examples

library(h2o)
localH20 = h2o0.init()

data(iris)

summary(iris)

iris.r <- iris

iris.h2o0 <- as.h2o0(localH20, iris.r, key="iris.h20")
class(iris.h20)

as.matrix.H20ParsedData
Converts a parsed H20 object to a matrix.

Description

Convert an H20ParsedData object to a matrix, which allows subsequent data frame operations
within the R environment.

Usage
S3 method for class 'H20ParsedData'
as.matrix(x, ...)

Arguments
X An H20ParsedData object.

Additional arguments to be passed to or from methods.

Value

Returns a matrix in the R environment. Note that this call establishes the data set in the R environ-
ment, and subsequent operations on the matrix take place within R, not H20. When data are large,
users may experience significant slowdown.

Examples

library(h2o)

localH20 = h2o.init()

prosPath = system.file("extdata”, "prostate.csv”, package="h20")
prostate.hex = h2o.importFile(localH20, path = prosPath)
prostate.matrix <- as.matrix(prostate.hex)

summary (prostate.matrix)

head(prostate.matrix)

10 cbind. H2OParsedData

as.table.H20ParsedData
Converts a parsed H20 object to a table in R.

Description

Convert an H20ParsedData object to a table, which allows subsequent data frame operations within
the R environment.

Usage
S3 method for class 'H20ParsedData’
as.table(x, ...)

Arguments
X An H20ParsedData object.

Additional arguments to be passed to or from methods.

Value

Returns a table in the R environment. Note that this call establishes the data set in the R environ-
ment, and subsequent operations on the table take place within R, not H20. When data are large,
users may experience significant slowdown.

Examples

library(h2o)

localH20 = h2o.init()

prosPath = system.file("extdata”, "prostate.csv”, package="h20")
prostate.hex = h2o.importFile(localH20, path = prosPath)
prostate.table <- as.table(prostate.hex)

summary (prostate.table)

head(prostate.table)

cbind.H20ParsedData Combine H20 Datasets by Columns

Description

cbind.H20ParsedData, a method for the cbind generic. Takes a sequence of H20 datasets and
combines them by column.

Usage

S3 method for class 'H20ParsedData’
cbind(..., deparse.level = 1)

colnames 11

Arguments

A sequence of H20ParsedData arguments. All datasets must exist on the same
H20 instance (IP and port) and contain the same number of rows.

deparse.level Integer controlling the construction of column names. Currently unimplemented.

Value

An H20ParsedData object containing the combined . .. arguments column-wise.

Examples

library(h20)

localH20 = h2o0.init()

prosPath = system.file("extdata”, "prostate.csv”, package="h20")
prostate.hex = h2o.importFile(localH20, path = prosPath)
prostate.cbind = cbind(prostate.hex, prostate.hex)
head(prostate.chind)

colnames Returns column names for a parsed H20 data object.

Description

Returns column names for an H20ParsedData object.

Usage

colnames(x, do.NULL = TRUE, prefix = "col")

Arguments
X AnH20ParsedData object.
do.NULL Logical value. If FALSE and names are NULL, names are created.
prefix Character string denoting prefix for created column names.
Value

Returns a vector of column names.

Examples
library(h2o)
localH20 = h2o0.init()
irisPath = system.file("extdata”, "iris.csv", package="h20")

iris.hex = h2o.importFile(localH20, path = irisPath, key = "iris.hex")
summary (iris.hex)
colnames(iris.hex)

12 diff. H2OParsedData

data.frameORnull-class
Class "data.frameORnull”

Description

A data.frame or NULL

Objects from the Class

This is a VIRTUAL class and objects of this class cannot be instantiated.

diff.H20ParsedData Lagged Differences of H20 Dataset

Description

diff.H20ParsedData, a method for the diff generic. Calculate the lagged and iterated differences
of a single numeric column in a H20 dataset.

Usage
S3 method for class 'H20ParsedData’
diff(x, lag = 1, differences =1, ...)
Arguments
X An H20ParsedData object.
lag An integer indicating which lag to use. Must be greater than 0.
differences An integer indicating the order of the differences. Must be greater than 0.

Potential further arguments. (Currently unimplemented).

Value

An H20ParsedData object with a single numeric column containing the successive lagged and
iterated differences. If differences = 1, this is equivalent to x[(1+lag):n] - x[1:(n-lag)].
For differences greater than 1, the algorithm is applied recursively to x.

Examples

library(h2o)

localH20 = h20.init()

prosPath = system.file("extdata”, "prostate.csv”, package="h20")
prostate.hex = h2o.importFile(localH20, path = prosPath)
diff(prostate.hex$AGE)

doNotCallThisMethod... Unsupported 13

doNotCallThisMethod. . .Unsupported
Internal method used for testing at the API level.

Description

Fetches all of the model JSON for the model key passed in.

Usage

doNotCallThisMethod. . .Unsupported(h2o, key)

Arguments

h2o An h20 object returned from h20.init() that represents the connection to the h2o
cloud.

key Any valid model key that exists in the h2o cluster.

Value

A blob of JSON.

Examples

library(h2o)

localH20 = h2o0.init()

hex <- as.h2o0(localH20, iris)

m <- h2o.randomForest(x = 1:4, y = 5, data = hex)
doNotCallThisMethod. . .Unsupported(localH20, m@key)

Extremes Maxima and Minima

Description

Calculates the (parallel) minimum of the input values. This method extends the min generic to deal
with H20ParsedData objects.

Usage
max(..., na.rm = FALSE)
min(..., na.rm = FALSE)
Arguments
Numeric, character or H20ParsedData arguments.
na.rm Logical value where FALSE does not remove NA’s in the calculation and TRUE

removes NA’s in the calculation.

14 h2o.addFunction

Value

Returns the maximum or minimum over all the input arguments. For a H20ParsedData object, the
function is calculated over all entries in the dataset. An error will occur if any of those entries is
non-numeric.

Examples

library(h20)

localH20 = h2o0.init()

ausPath = system.file("extdata”, "australia.csv”, package = "h20")
australia.hex = h2o.importFile(localH20, path = ausPath, key = "australia.hex")
min(australia.hex)

h2o.addFunction Adds an R function to H20

Description

Add a function defined in R to the H20O server, so it is recognized for future operations on H20.
This method is necessary because R functions are not automatically pushed across via the REST
API to H20.

Usage

h2o0.addFunction(object, fun, name)

Arguments
object An H20Client object containing the IP address and port of the server running
H20.
fun A function in R. Currently, only a subset of the R syntax is recognizable by
H20, and functions that fall outside this set will be rejected. Values referred to
by fun must be defined within H20, e.g. a H20 dataset must be referred to by
its key name, not its H2OParsedData R variable name.
name (Optional) A character string giving the name that the function should be saved
under in H20. If missing, defaults to the name that the function is saved under
inR.
Details

This method is intended to be used in conjunction with h2o.ddply. The user must explicitly add
the function he or she wishes to apply to H20. Otherwise, the server will not recognize a function
reference that only exists in R.

See Also
h2o.ddply

Examples

library(h2o)
localH20 = h2o.init()
h2o.addFunction(localH20, function(x) { 2*x + 5 }, "simpleFun")

h2o0.anomaly 15

h20.anomaly Anomaly Detection via H20 Deep Learning Model

Description

Detect anomalies in a H20 dataset using a H20 deep learning model with auto-encoding.

Usage
h2o.anomaly(data, model, key = "", threshold = -1.0)
Arguments
data An H20ParsedData object.
model An H20DeepLearningModel object that represents the model to be used for
anomaly detection. Must have been built with the argument autoencoder = TRUE
in h2o.deeplearning.
key (Optional) The unique hex key assigned to the resulting dataset. If none is given,
a key will automatically be generated.
threshold (Optional) Threshold of reconstruction error for rows to be displayed in logs. If
set to -1.0, this defaults to 10 times the MSE.
Value

Returns an H20ParsedData object with a single column containing the reconstruction MSE.

See Also

H20ParsedData, H20DeeplLearningModel, h2o.deeplearning

Examples

library(h20)

localH20 = h2o.init()

prosPath = system.file("extdata”, "prostate.csv”, package = "h20")

prostate.hex = h2o.importFile(localH20, path = prosPath)

prostate.dl = h2o.deeplearning(x = 3:9, y = 2, data = prostate.hex, autoencoder = TRUE,
hidden = c(10, 10), epochs = 5)

prostate.anon = h2o.anomaly(prostate.hex, prostate.dl)

head(prostate.anon)

16 h2o.assign

h2o.anyFactor Determine if an H20 parsed data object contains categorical data.

Description

Checks if an H20 parsed data object has any columns of categorical data.

Usage

h2o.anyFactor(x)

Arguments

X An H20ParsedData object.

Value

Returns a logical value indicating whether any of the columns in x are factors.

See Also
H20ParsedData
Examples
library(h2o)
localH20 = h2o0.init()
irisPath = system.file("extdata”, "iris_wheader.csv", package="h20")

iris.hex = h2o.importFile(localH20, path = irisPath)
h2o.anyFactor(iris.hex)

h20.assign Assigns an H20 hex.key to an H20 object so that it can be utilized in
subsequent calls

Description

Allows users to assign H20 hex.keys to objects in their R environment so that they can manipulate
H20 data frames and parsed data objects.

Usage

h2o.assign(data, key)

Arguments

data An H20ParsedData object
key The hex key to be associated with the H20 parsed data object

h2o.clearLogs 17

Value

The function returns an object of class H20ParsedData

Examples

library(h20o)

localH20 = h2o.init()

prosPath = system.file("extdata”, "prostate.csv”, package = "h20")

prostate.hex = h2o.importFile(localH20, path = prosPath)

psa.gs = quantile(prostate.hex$PSA)

PSA.outliers = prostate.hex[prostate.hex$PSA <= psa.qs[2] | prostate.hex$PSA >= psa.qs[10],]
PSA.outliers = h2o.assign(PSA.outliers, "PSA.outliers")

summary (PSA.outliers)

head(prostate.hex)

head(PSA.outliers)

h2o.clearlLogs Delete All H20O R Logs

Description

Clear all H20 R command and error response logs from local disk. Used primarily for debugging
purposes.

Usage

h2o.clearlLogs()

See Also

h2o.startlLogging, h2o.stopLogging, h2o.openLog, h2o.getLogPath, h2o.setlLogPath

Examples

library(h2o)

localH20 = h2o0.init()

h2o.startLogging()

ausPath = system.file("extdata”, "australia.csv", package="h20")
australia.hex = h2o.importFile(localH20, path = ausPath)
h2o.stopLogging()

h2o.clearLogs()

18 h2o.clusterStatus

h2o.clusterInfo Get Information on H20 Cluster

Description

Display the name, version, uptime, total nodes, total memory, total cores and health of a cluster
running H20.

Usage

h2o.clusterInfo(client)

Arguments

client An H20Client object containing the IP address and port of the server running
H20.

See Also

H20Client

Examples

library(h20o)
localH20 = h2o.init()
h2o.clusterInfo(localH20)

h2o.clusterStatus Retrieve Status of H20 Cluster

Description

Retrieve information on the status of the cluster running H20.

Usage

h2o.clusterStatus(client)

Arguments

client An H20Client object containing the IP address and port of the server running
H20.

h2o.confusionMatrix 19

Details

This method prints the status of the H2O cluster represented by client, consisting of the following
information:

* Version: The version of H20 running on the cluster.

e Cloud Name: Name of the cluster.

¢ Node Name: Name of the node. (Defaults to the HTTP address).

e Cloud Size: Number of nodes in the cluster.
Furthermore, for each node, this function displays:

* name: Name of the node.

e value_size_bytes: Amount of data stored on the node.

* free_mem_bytes: Amount of free memory on the JVM.

* max_mem_bytes: Maximum amount of memory that the JVM will attempt to use.
* free_disk_bytes: Amount of free space on the disk that launched H20.

e max_disk_bytes: Size of disk that launched H20.

* num_cpus: Number of CPUs reported by JVM.

* system_load: Average system load.

* rpcs: Number of remote procedure calls.

e last_contact: Number of seconds since last heartbeat.

See Also

H20Client, h20.init

Examples

library(h2o)
localH20 = h2o0.init()
h2o.clusterStatus(localH20)

h2o.confusionMatrix Build a Confusion Matrix from H20O Classification Predictions

Description

Constructs a confusion matrix from a column of predicted responses and a column of actual (refer-
ence) responses in H20. Note that confusion matrices describe prediciton errors for classification
data only.

Usage

h2o.confusionMatrix(data, reference)

20

Arguments
data An H20ParsedData object that represents the predicted response values. (Must
be a single column).
reference An H20ParsedData object that represents the actual response values. Must have
the same dimensions as data.
Value

Returns a confusion matrix with the actual value counts along the rows and the predicted value

counts along the columns.

See Also

H20ParsedData

Examples

library(h2o)

localH20 = h2o0.init()

prosPath = system.file("extdata”, "prostate.csv”, package="h20")
prostate.hex = h2o.importFile(localH20, path = prosPath)
prostate.gbm = h2o.gbm(x = 3:9, y = 2, data = prostate.hex)
prostate.pred = h2o.predict(prostate.gbm)
h2o.confusionMatrix(prostate.pred[,1], prostate.hex[,2])

h2o0.coxph H20: Cox Proportional Hazards Models

Description

Fit a Cox Proportional Hazards Model.

Usage

nn

h2o.coxph(x, y, data, key =
ties = c("efron”, "breslow"), init = 0,
control = h2o.coxph.control(...), ...)

h2o0.coxph.control(lre = 9, iter.max = 20, ...)

H20CoxPHModel summary functions
S4 method for signature 'H20CoxPHModel'
summary(object, conf.int = 0.95, scale =1, ...)
S3 method for class 'H20CoxPHModel'
survfit(formula, newdata, conf.int = 0.95,
conf.type = c("log"”, "log-log", "plain"”, "none"),

H20CoxPHModel extractor functions
S3 method for class 'H20CoxPHModel'
extractAIC(fit, scale, k = 2, ...)
S3 method for class 'H20CoxPHModel'

, weights = NULL, offset = NULL,

h2o0.coxph 21

logLik(object, ...)

S3 method for class 'H20CoxPHModel'

vcov(object, ...)

Arguments

X A character vector containing the column names of the predictors in the model.

y A character vector comprised of two or three elements representing " (stop, event)”
or "(stop, event)"” respectively.

data An H20ParsedData object containing the variables in the model.

key An optional unique hex key assigned to the resulting model. If none is given, a
key will automatically be generated.

weights An optional character string representing the case weights in the model.

offset An optional character vector representing the offset terms in the model.

ties A character string denoting which approximation method for handling ties should
be used in the partial likelihood; one of either "efron” or "breslow”.

init A numeric vector containing the finite starting values for the model coefficients.

control The model fitting control arguments specified by h2o. coxph.control.

lre A positive number for the log-relative error (LRE) of subsequent log partial

likelihood calculations to determine convergence in h2o. coxph.

iter.max A positive integer denoting the maximum number of iterations to allow for con-
vergence in h2o. coxph.

object, formula, fit
An object of class H20CoxPHModel.

newdata An optional H20ParsedData object containing a new data set.

conf.int An optional number that specifies the confidence interval level.

conf. type An optional string that specifies the confidence interval type.

scale An optional number that specifies the scale parameter of the model.

k An optional number specifying the weight for the equivalent degrees of free-

doms in the AIC calculation.

Additional arguments.

Value

An object of class H20CoxPHModel.

References

Andersen, P. and Gill, R. (1982). Cox’s regression model for counting processes, a large sample
study. Annals of Statistics 10, 1100-1120.

Harrell, Jr. FE., Regression Modeling Strategies: With Applications to Linear Models, Logistic
Regression, and Survival Analysis. Springer-Verlag, 2001.

Therneau, T., Grambsch, P., Modeling Survival Data: Extending the Cox Model. Springer-Verlag,
2000.

See Also

coxph, summary . coxph, survfit.coxph, extractAIC, logLik, vcov

22 h2o.createFrame

Examples

library(h2o)
localH20 <- h2o0.init()

Use pbc data set from the survival package

pbc.hex <- as.h2o0(localH20, pbc, key = "pbc.hex")

pbc.hex$statusOf2 <- pbc.hex$status ==

pbc.hex$logBili <- log(pbc.hex$bili)

pbc.hex$logProtime <- log(pbc.hex$protime)

pbc.hex$logAlbumin <- log(pbc.hex$albumin)

pbcmodel <- h2o.coxph(x = c("age", "edema"”, "logBili", "logProtime”, "logAlbumin"),
y = c("time"”, "statusO0f2"), data = pbc.hex)

summary (pbcmodel)

pbcsurv <- survfit(pbcmodel)

summary (pbcsurv)

plot(pbcsurv)

h20.createFrame Create an H20 Frame

Description

Create an H20 data frame from scratch, with optional randomization. Supports categoricals, inte-
gers, reals and missing values.

Usage

h2o.createFrame(object, key = "", rows = 10000, cols = 10, seed, randomize = TRUE,
value = 0, real_range = 100, categorical_fraction = 0.2, factors = 100,
integer_fraction = 0.2, integer_range = 100, binary_fraction = 0.1,
binary_ones_fraction = 0.02, missing_fraction = 0.01, response_factors = 2,
has_response = FALSE)

Arguments
object An H20Client object containing the IP address and port of the server running
H20.
key The unique hex key assigned to the created frame.
rows Number of rows
cols Number of columns
seed Random number seed
randomize Whether frame should be randomized
value Constant value (for randomize=false)
real_range Range for real variables (-range ... range)

categorical_fraction

Fraction of categorical columns (for randomize=true)
factors Factor levels for categorical variables
integer_fraction

Fraction of integer columns (for randomize=true)

h2o.cut 23

integer_range Range for integer variables (-range ... range)

binary_fraction
Fraction of binary columns (for randomize=true)

binary_ones_fraction
Fraction of 1’s in binary columns (for randomize=true)

missing_fraction
Fraction of missing values

response_factors
Number of factor levels of the first column (1=real, 2=binomial, N=multinomial)

has_response Whether an additional response column should be generated. The final data
frame will have cols+1 columns

Value

Returns an H20 data frame.

Examples

library(h2o)
localH20 = h2o.init(beta = TRUE)
myframe = h2o.createFrame(localH20, 'myframekey', rows = 1000, cols = 10,
seed = -12301283, randomize = TRUE, value = @, real_range = 2.0,
categorical_fraction = 0.2, factors = 100,
integer_fraction = 0.2, integer_range = 100,
binary_fraction = 0.1, binary_ones_fraction = 0.01,
missing_fraction = 0.1, response_factors = 2, has_response = FALSE)
head(myframe)
summary (myframe)
h20.shutdown(localH20)

h2o.cut Convert H20 Numeric Data to Factor

Description

Divides the range of the H20O data into intervals and codes the values according to which interval
they fall in. The leftmost interval corresponds to level one, the next is level two, etc.

Usage

h2o.cut(x, breaks)

Arguments
X An H20ParsedData object with numeric columns.
breaks A numeric vector of two or more unique cut points.
Value

A H20ParsedData object containing the factored data with intervals as levels.

24 h2o.ddply

Examples
library(h20o)
localH20 = h2o.init()
irisPath = system.file("extdata”, "iris_wheader.csv"”, package="h20")

iris.hex = h2o.importFile(localH20, path = irisPath, key = "iris.hex")
summary(iris.hex)

Cut sepal length column into intervals determined by min/max/quantiles
sepal_len.cut = h2o.cut(iris.hex$sepal_len, c(4.2, 4.8, 5.8, 6, 8))
head(sepal_len.cut)

summary(sepal_len.cut)

h2o.ddply Split H20 dataset, apply function, and return results

Description

For each subset of a H20 dataset, apply a user-specified function, then combine the results.

Usage
h2o.ddply(.data, .variables, .fun = NULL, ..., .progress = "none")
Arguments
.data An H20ParsedData object to be processed.
.variables Variables to split . data by, either the indices or names of a set of columns.
.fun Function to apply to each subset grouping. Must have been pushed to H20 using
h2o.addFunction.
Additional arguments passed on to . fun. (Currently unimplemented).
.progress Name of the progress bar to use. (Currently unimplemented).
Details

This is an extension of the plyr library’s ddply function to datasets loaded into H20.

Value
An H20ParsedData object containing the results from the split/apply operation, arranged row-by-
TOW.

References

Hadley Wickham (2011). The Split-Apply-Combine Strategy for Data Analysis. Journal of Statis-
tical Software, 40(1), 1-29. http://www. jstatsoft.org/v40/i01/.

See Also

h20.addFunction

http://www.jstatsoft.org/v40/i01/

h2o.deepfeatures 25

Examples

library(h20)
localH20 = h2o0.init()

Import iris dataset to H20
irisPath = system.file("extdata”, "iris_wheader.csv”, package = "h20")
iris.hex = h2o.importFile(localH20, path = irisPath, key = "iris.hex")

Add function taking mean of sepal_len column
fun = function(df) { sum(df[,1], na.rm = T)/nrow(df) }
h2o.addFunction(localH20, fun)

Apply function to groups by class of flower

uses h2o0's ddply, since iris.hex is an H20ParsedData object
res = h2o.ddply(iris.hex, "class”, fun)

head(res)

h2o.deepfeatures Feature Generation via H20 Deep Learning Model

Description

Extract the non-linear features from a H20 dataset using a H20 deep learning model.

Usage
h2o.deepfeatures(data, model, key = "", layer = -1)
Arguments
data An H20ParsedData object.
model An H20DeeplLearningModel object that represents the deeplearning model to be
used for feature extraction.
key (Optional) The unique hex key assigned to the resulting dataset. If none is given,
a key will automatically be generated.
layer (Optional) Index of the hidden layer to extract. If none is given, the last hidden
layer is chosen.)
Value

Returns an H20ParsedData object with as many features as the number of units in the hidden layer
of specified index. If the model is supervised, and the data object has a column of the same name
as the response with which the model was trained, then the response column will be prepended to
the output frame.

See Also

H20ParsedData, H20DeepLearningModel, h2o.deeplearning

26 h2o.deeplearning

Examples

library(h2o)

localH20 = h2o0.init()

prosPath = system.file("extdata”, "prostate.csv”, package = "h20")

prostate.hex = h2o.importFile(localH20, path = prosPath)

prostate.dl = h2o.deeplearning(x = 3:9, y = 2, data = prostate.hex, hidden = c(100, 200),
epochs = 5)

prostate.deepfeatures_layer1l = h2o.deepfeatures(prostate.hex, prostate.dl, layer

prostate.deepfeatures_layer2 = h2o.deepfeatures(prostate.hex, prostate.dl, layer

head(prostate.deepfeatures_layer1)

head(prostate.deepfeatures_layer?2)

D
2)

h2o.deeplearning H20: Deep Learning Neural Networks

Description

Performs Deep Learning neural networks on an H20ParsedData object.

Usage

nn

h2o.deeplearning(x, y, data, key = "" override_with_best_model, classification = TRUE,
nfolds = @, validation, holdout_fraction = @, checkpoint = "", autoencoder,
use_all_factor_levels, activation, hidden, epochs, train_samples_per_iteration,
seed, adaptive_rate, rho, epsilon, rate, rate_annealing, rate_decay,
momentum_start, momentum_ramp, momentum_stable, nesterov_accelerated_gradient,
input_dropout_ratio, hidden_dropout_ratios, 11, 12, max_w2,
initial_weight_distribution, initial_weight_scale, loss,
score_interval, score_training_samples, score_validation_samples,
score_duty_cycle, classification_stop, regression_stop, quiet_mode,
max_confusion_matrix_size, max_hit_ratio_k, balance_classes, class_sampling_factors,
max_after_balance_size, score_validation_sampling, diagnostics,
variable_importances, fast_mode, ignore_const_cols, force_load_balance,
replicate_training_data, single_node_mode, shuffle_training_data,
sparse, col_major, max_categorical_features, reproducible)

Arguments
X A vector containing the names of the predictors in the model.
y The name of the response variable in the model.
data An H20ParsedData object containing the variables in the model.
key (Optional) The unique hex key assigned to the resulting model. If none is given,

a key will automatically be generated.

override_with_best_model
If enabled, override the final model with the best model found during training.
Defaults to true.

classification (Optional) A logical value indicating whether the algorithm should conduct clas-
sification.

nfolds (Optional) Number of folds for cross-validation. If nfolds >= 2, thenvalidation
must remain empty.

h2o.deeplearning

validation

27

(Optional) An H20ParsedData object indicating the validation dataset used to
construct confusion matrix. If left blank, this defaults to the training data when
nfolds = 0.

holdout_fraction

checkpoint

activation

hidden

autoencoder

(Optional) Fraction of the training data to hold out for validation.

"Model checkpoint (either key or H20DeepLearningModel) to resume training
with."

A string indicating the activation function to use. Must be either "Tanh", "Tan-
hWithDropout", "Rectifier", "RectifierWithDropout", "Maxout" or "MaxoutWith-
Dropout".

Hidden layer sizes (e.g. ¢(100,100)

Enable auto-encoder for model building.

use_all_factor_levels

epochs

Use all factor levels of categorical variables. Otherwise, the first factor level is
omitted (without loss of accuracy). Useful for variable importances and auto-
enabled for autoencoder.

How many times the dataset should be iterated (streamed), can be fractional

train_samples_per_iteration

seed

adaptive_rate
rho

epsilon

rate
rate_annealing
rate_decay
momentum_start

momentum_ramp

momentum_stable

Number of training samples (globally) per MapReduce iteration. Special values
are 0: one epoch, -1: all available data (e.g., replicated training data), -2: auto-
tuning (default)

Seed for random numbers (affects sampling) - Note: only reproducible when
running single threaded

Adaptive learning rate (ADADELTA)
Adaptive learning rate time decay factor (similarity to prior updates)

Adaptive learning rate smoothing factor (to avoid divisions by zero and allow
progress)

Learning rate (higher => less stable, lower => slower convergence)
Learning rate annealing: rate / (1 + rate_annealing * samples)

Learning rate decay factor between layers (N-th layer: rate*alpha™(N-1))
Initial momentum at the beginning of training (try 0.5)

Number of training samples for which momentum increases

Final momentum after the ramp is over (try 0.99)

nesterov_accelerated_gradient

Use Nesterov accelerated gradient (recommended)

input_dropout_ratio

Input layer dropout ratio (can improve generalization, try 0.1 or 0.2)

hidden_dropout_ratios

11

12

max_w?2

Hidden layer dropout ratios (can improve generalization), specify one value per
hidden layer, defaults to 0.5

L1 regularization (can add stability and improve generalization, causes many
weights to become 0)

L2 regularization (can add stability and improve generalization, causes many
weights to be small

Constraint for squared sum of incoming weights per unit (e.g. for Rectifier)

28

h2o.deeplearning

initial_weight_distribution

Initial Weight Distribution
initial_weight_scale

Uniform: -value...value, Normal: stddev

loss Loss function

score_interval Shortest time interval (in secs) between model scoring
score_training_samples

Number of training set samples for scoring (O for all)
score_validation_samples

Number of validation set samples for scoring (0 for all)
score_duty_cycle

Maximum duty cycle fraction for scoring (lower: more training, higher: more

scoring).
classification_stop

Stopping criterion for classification error fraction on training data (-1 to disable)
regression_stop

Stopping criterion for regression error (MSE) on training data (-1 to disable)

quiet_mode Enable quiet mode for less output to standard output
max_confusion_matrix_size

Max. size (number of classes) for confusion matrices to be shown
max_hit_ratio_k

Max. number (top K) of predictions to use for hit ratio computation (for multi-

class only, 0 to disable)
balance_classes

Balance training data class counts via over/under-sampling (for imbalanced data)
class_sampling_factors

Desired over/under-sampling ratios per class (lexicographic order).
max_after_balance_size

Maximum relative size of the training data after balancing class counts (can be
less than 1.0)

score_validation_sampling
Method used to sample validation dataset for scoring

diagnostics Enable diagnostics for hidden layers
variable_importances
Compute variable importances for input features (Gedeon method) - can be slow
for large networks
fast_mode Enable fast mode (minor approximation in back-propagation)
ignore_const_cols
Ignore constant training columns (no information can be gained anyway)
force_load_balance
Force extra load balancing to increase training speed for small datasets (to keep
all cores busy)
replicate_training_data
Replicate the entire training dataset onto every node for faster training on small
datasets
single_node_mode
Run on a single node for fine-tuning of model parameters

h2o.deeplearning 29

shuffle_training_data
Enable shuffling of training data (recommended if training data is replicated and
train_samples_per_iteration is close to #nodes x #rows)

sparse Sparse data handling (Experimental)

col_major Use a column major weight matrix for input layer. Can speed up forward prop-
agation, but might slow down backpropagation (Experimental)
max_categorical_features
Max. number of categorical features, enforced via hashing (Experimental)

reproducible Force reproducibility on small data (will be slow - only uses 1 thread)

Value

An object of class H20DeepLearningModel with slots key, data, valid (the validation dataset) and
model, where the last is a list of the following components:

confusion The confusion matrix of the response, with actual observations as rows and pre-
dicted values as columns.

train_class_err
Classification error on the training dataset.

train_sqr_err Mean-squared error on the training dataset.

valid_class_err
Classification error on the validation dataset.

valid_sqr_err Mean-squared error on the validation dataset.

Examples
-- CRAN examples begin --
library(h2o)
localH20 = h2o0.init()
irisPath = system.file("extdata”, "iris.csv", package = "h20")
iris.hex = h2o.importFile(localH20, path = irisPath)
h2o.deeplearning(x = 1:4, y = 5, data = iris.hex, activation = "Tanh”,

hidden = c(10, 10), epochs = 5)
-- CRAN examples end --

Not run:
DeeplLearning variable importance
Also see:
https://github.com/0xdata/h2o/blob/master/R/tests/testdir_demos/runit_demo_VI_all_algos.R
data.hex = h2o.importFile(
localH20,
path = "https://raw.github.com/@xdata/h2o/master/smalldata/bank-additional-full.csv"”,
key = "data.hex")
myX = 1:20
myY="y"
my.dl = h2o.deeplearning(x=myX,y=myY,data=data.hex,classification=T,activation="Tanh",
hidden=c(10,10,10),epochs=12,variable_importances=T)
dl.VI =my.dl@model$varimp
print(dl.VvI)

End(Not run)

30 h2o0.downloadCSV

h20.downloadAlllLogs Download H20 Log Files to Disk

Description

Download all H20 log files to local disk. Generally used for debugging purposes.

Usage
h2o.downloadAllLogs(client, dirname = ".", filename = NULL)
Arguments
client An H20Client object containing the IP address and port of the server running
H20.
dirname (Optional) A character string indicating the directory that the log file should be
saved in.
filename (Optional) A character string indicating the name that the log file should be
saved to.
See Also
H20Client
Examples
library(h20o)

localH20 = h2o0.init()

h2o.downloadAllLogs(localH20, dirname = getwd(), filename = "h2o_logs.log")
file.info(paste(getwd(), "h2o_logs.log", sep = .Platform$file.sep))
file.remove(paste(getwd(), "h2o_logs.log", sep = .Platform$file.sep))

h20.downloadCSV Download H20 Data to Disk

Description

Download a H20 dataset to a CSV file on local disk.

Usage

h2o.downloadCSV(data, filename, quiet = FALSE)

Arguments
data An H20ParsedData object to be downloaded.
filename A character string indicating the name that the CSV file should be saved to.

quiet (Optional) If TRUE, suppress status messages and progress bar.

h2o.exec 31

Details

WARNING: Files located on the H20O server may be very large! Make sure you have enough hard
drive space to accommodate the entire file.

See Also
H20ParsedData
Examples
library(h2o)
localH20 = h2o0.init()
irisPath = system.file("extdata”, "iris_wheader.csv", package = "h20")

iris.hex = h2o.importFile(localH20, path = irisPath)

myFile = paste(getwd(), "my_iris_file.csv", sep = .Platform$file.sep)
h20.downloadCSV(iris.hex, myFile)

file.info(myFile)

file.remove(myFile)

h2o.exec Execute a Command on H20

Description

Directly send over and execute an R expression in the H20 console.

Usage

h2o.exec(expr_to_execute, h2o, dest_key)

Arguments

expr_to_execute
An R expression that is supported by H20. Currently, basic subsetting, arith-
metic operations, logical filters, and simple expressions like dim are allowed.

h2o (Optional)Point to an instance of H2O. If not given, h2o.exec will try to guess.

dest_key (Optional)Give a destination key to the expression to be executed. If not given,
h2o.exec will try to guess.

Value

A H20ParsedData object containing the result of the expression.

Examples

library(h20o)

localH20 = h2o.init()

hex <- as.h20(localH20, iris)

res1l = h2o.exec(hex[,1] + hex[,2])

head(res1)

res2 = h2o.exec(hex[,1] + hex[, 2] + hex[, 3] * hex[,4] / hex[,1])

32 h2o.exportFile

head(res2)

res3<- h2o.exec(hex$nc<- ifelse(hex[,1]<5,log(hex[,3]+1),hex[,"Petal.Width"]/hex$Sepal.Width))
head(res3)

head(hex)

h2o.exportFile Export H20 Data Frame to a File.

Description

Export an H20 Data Frame (which can be either VA or FV) to a file. This file may be on the H20
instance’s local filesystem, or to HDFS (preface the path with hdfs://) or to S3N (preface the path
with s3n://).

Usage

Default method:
h2o.exportFile(data, path, force = FALSE)

Arguments
data An H20ParsedData data frame.
path The path to write the file to. Must include the directory and filename. May be
prefaced with hdfs:// or s3n://. Each row of data appears as one line of the file.
force (Optional) If force = TRUE any existing file will be overwritten. Otherwise if
the file already exists the operation will fail.
Value

None. (The function will stop if it fails.)

Examples
Not run:
library(h2o)
localH20 = h2o.init()
irisPath = system.file("extdata”, "iris.csv", package = "h20")
iris.hex = h2o.importFile(localH20, path = irisPath)
h2o.exportFile(iris.hex, path = "/path/on/h2o/server/filesystem/iris.csv")

h2o.exportFile(iris.hex, path "hdfs://path/in/hdfs/iris.csv")
h2o.exportFile(iris.hex, path = "s3n://path/in/s3/iris.csv")

End(Not run)

h2o0.gains 33

h2o.gains Gains and Lift Charts

Description

Construct the gains table and lift charts for binary outcome algorithms. Lift charts and gains tables
are commonly applied to marketing.

Usage

h2o.gains(actual, predicted, groups=10, percents=FALSE)

Arguments
actual An H20ParsedData object containing the predicted outcome scores. Must be a
single column with the same number of rows as reference.
predicted An H20ParsedData object containing the actual outcomes for comparison. Must
be a single binary column with all entries in {0,1}.
groups an integer containing the number of rows in the gains table. The default value is
10.
percents (Optional) a logical that indicates whether to return results as percentage values
for the cumulative lift,
Value

An R data.frame with columns Quantile, Response.Rate, Lift, Cumulative.Lift If percents is TRUE,
then Quantile, Response.Rate, and Cumulative.Lift will be in percent form.

Examples

library(h2o)
localH20 = h20.init()

Run GBM classification on prostate.csv

prosPath = system.file("extdata”, "prostate.csv”, package = "h20")
prostate.hex = h2o.importFile(localH20, path = prosPath, key = "prostate.hex")
prostate.gbm = h2o.gbm(y = 2, x = 3:9, data = prostate.hex)

Calculate performance measures at threshold that maximizes precision
prostate.pred = h2o.predict(prostate.gbm)

head(prostate.pred)

h2o.gains(prostate.hex$CAPSULE, prostate.pred[,3], percents = TRUE)

34 h2o.gapStatistic

h2o.gapStatistic Compute Gap Statistic from H20 Dataset

Description

Compute the gap statistic of a H20 dataset. The gap statistic is a measure of the goodness of fit of
a clustering algorithm. For each number of clusters k, it compares log(W (k)) with E*[log(W (k))]
where the latter is defined via bootstrapping.

Usage
h2o0.gapStatistic(data, cols = "", K = 10,
B = 10, boot_frac = 0.1, max_iter = 50, seed = 0)
Arguments
data An H20ParsedData object.
cols (Optional) A vector of column names or indices indicating the features to ana-
lyze. By default, all columns in the dataset are analyzed.
K The maximum number of clusters to consider. Must be at least 2.
B A positive integer indicating the number of Monte Carlo (bootstrap) samples for
simulating the reference distribution.
boot_frac Fraction of data size to replicate in each Monte Carlo simulation.
max_iter Number of iterations before stopping in KMeans.
seed (Optional) Random number seed for breaking ties between equal probabilities.
Value

A list containing the following components:

log_within_ss Log of the pooled cluster within sum of squares per value of k.
boot_within_ss

Monte Carlo bootstrap replicate averages of log_within_ss per value of k.
se_boot_within_ss

Standard error from the Monte Carlo simulated data for each iteration.

gap_stats Gap statistics per value of k.
k_opt Optimal number of clusters.
References

Tibshirani, R., Walther, G. and Hastie, T. (2001). Estimating the number of data clusters via the
Gap statistic. Journal of the Royal Statistical Society B, 63, 411-423.

Tibshirani, R., Walther, G. and Hastie, T. (2000). Estimating the number of clusters in a dataset via
the Gap statistic. Technical Report. Stanford.

See Also

H20ParsedData, h2o.kmeans

h20.gbm 35

Examples

Currently still in beta, so don't automatically run example
Not run:
library(h20)
localH20 = h2o0.init()
iris.hex <- as.h2o(localH20, iris)
gs <- h2o.gapStatistic(iris.hex, K = 10, B = 10)
gs # default show displays number of KMeans run and the optimal k
summary(gs) # gives all model information computed
plot(gs) # shows various plots

End(Not run)

h2o.gbm H20: Gradient Boosted Machines

Description

Builds gradient boosted classification trees, and gradient boosed regression trees on a parsed data
set.

Usage

nn

h2o.gbm(x, y, distribution = "multinomial”, data, key = , h.trees = 10,
interaction.depth = 5, n.minobsinnode = 10, shrinkage = 0.1, n.bins = 20,
group_split = TRUE, importance = FALSE, nfolds = @, validation, holdout.fraction = 0,
balance.classes = FALSE, max.after.balance.size = 5, class.sampling.factors = NULL,
grid.parallelism = 1)

Arguments
X A vector containing the names or indices of the predictor variables to use in
building the GBM model.
y The name or index of the response variable. If the data does not contain a header,

this is the column index number starting at 0, and increasing from left to right.
(The response must be either an integer or a categorical variable).

distribution The type of GBM model to be produced: classification is "multinomial” (de-
fault), "gaussian" is used for regression, and "bernoulli" for binary outcomes.

data An H20ParsedData object containing the variables in the model.

key (Optional) The unique hex key assigned to the resulting model. If none is given,
a key will automatically be generated.

n.trees (Optional) Number of trees to grow. Must be a nonnegative integer.
interaction.depth
(Optional) Maximum depth to grow the tree.

n.minobsinnode (Optional) Minimum number of rows to assign to teminal nodes.
shrinkage (Optional) A learning-rate parameter defining step size reduction.
n.bins (Optional) Number of bins to use in building histogram.

group_split (Optional) default is TRUE. If FALSE, does not do the bit-set group splitting
categoricals, but 1 vs. many.

36 h20.gbm

importance (Optional) A logical value indicating whether variable importance should be
calculated. This will increase the amount of time for the algorithm to complete.

nfolds (Optional) Number of folds for cross-validation. If nfolds >= 2, thenvalidation
must remain empty.

validation (Optional) An H20ParsedData object indicating the validation dataset used to
construct confusion matrix. If left blank, this defaults to the training data when
nfolds = 0.

holdout.fraction
(Optional) Fraction of the training data to hold out for validation.

balance.classes
(Optional) Balance training data class counts via over/under-sampling (for im-
balanced data)

max.after.balance.size

Maximum relative size of the training data after balancing class counts (can be
less than 1.0)

class.sampling.factors
Desired over/under-sampling ratios per class (lexicographic order).

grid.parallelism
An integer between 1 and 4 (inclusive) indicating how many parallel threads to
run during grid search.

Value

An object of class H20GBMMode1 with slots key, data, valid (the validation dataset) and model, where
the last is a list of the following components:

type The type of the tree.

n.trees Number of trees grown.

oob_err Out of bag error rate.

forest A matrix giving the minimum, mean, and maximum of the tree depth and num-

ber of leaves.

confusion Confusion matrix of the prediction when classification model is specified.

References

1. Elith, Jane, John R Leathwick, and Trevor Hastie. "A Working Guide to Boosted Regression
Trees." Journal of Animal Ecology 77.4 (2008): 802-813

2. Friedman, Jerome, Trevor Hastie, Saharon Rosset, Robert Tibshirani, and Ji Zhu. "Discussion of
Boosting Papers." Ann. Statist 32 (2004): 102-107

3. Hastie, Trevor, Robert Tibshirani, and J Jerome H Friedman. The Elements of Statistical Learn-
ing. Vol.1. N.p.: Springer New York, 2001. http://www.stanford.edu/~hastie/local.ftp/Springer/OLD//ESLII_print4.pdf

See Also

For more information see: http://docs.h20.ai/

h2o.getFrame 37

Examples

-- CRAN examples begin --
library(h2o)
localH20 = h2o0.init()

Run regression GBM on australia.hex data

ausPath = system.file("extdata”, "australia.csv”, package="h20")

australia.hex = h2o.importFile(localH20, path = ausPath)

independent <- c("premax”, "salmax","minairtemp”, "maxairtemp”, "maxsst",
"maxsoilmoist”, "Max_czcs")

dependent <- "runoffnew”

h2o0.gbm(y = dependent, x = independent, data = australia.hex, n.trees = 3, interaction.depth
n.minobsinnode = 2, shrinkage = 0.2, distribution= "gaussian")

-- CRAN examples end --

Not run:

Run multinomial classification GBM on australia data

h2o0.gbm(y = dependent, x = independent, data = australia.hex, n.trees = 3, interaction.depth
n.minobsinnode = 2, shrinkage = 0.01, distribution= "multinomial”)

GBM variable importance
Also see:
https://github.com/0xdata/h2o/blob/master/R/tests/testdir_demos/runit_demo_VI_all_algos.R
data.hex = h2o.importFile(
localH20,
path = "https://raw.github.com/@xdata/h2o/master/smalldata/bank-additional-full.csv",
key = "data.hex")
myX = 1:20
myY="y"
my.gbm <- h2o.gbm(x = myX, y = myY, distribution = "bernoulli”, data = data.hex, n.trees =100,
interaction.depth = 2, shrinkage = 0.01, importance = T)
gbm.VI = my.gbm@model$varimp
print(gbm.VI)
barplot(t(gbm.VI[1]),las=2,main="VI from GBM")

End(Not run)

h2o.getFrame Get Reference to H20 Data Set

Description

Get a reference to an existing H20 data set.

Usage
h2o.getFrame(h2o, key)

Arguments

h2o An H20Client object containing the IP address and port of the server running
H20.

key A string indicating the unique hex key of the data set to retrieve.

38 h2o0.getGLMLambdaModel

Value

Returns an object of class H20ParsedData.

Examples
library(h2o)
localH20 = h2o0.init()
irisPath = system.file("extdata”, "iris.csv", package = "h20")

h2o.importFile(localH20, path = irisPath, key = "iris.hex")
h20.1s(localH20)

iris.hex = h2o.getFrame(localH20, "iris.hex")
h20.shutdown(localH20)

h2o.getGLMLambdaModel Get H20 GLM Model for Specific Lambda

Description

Retrieve the H20 GLM model built using a specific value of lambda from a lambda search.

Usage

h2o.getGLMLambdaModel (model, lambda)

Arguments
model An H20GLMModel object generated by h20.glm with lambda search enabled.
lambda The specific value of lambda for which model to retrieve. If that lambda was not
include in or saved during the search, the method throws an error.
Value

Returns an object of class H20GLMModel.

Examples

library(h2o)

localH20 = h2o0.init()

prosPath = system.file("extdata”, "prostate.csv”, package = "h20")

prostate.hex = h2o.importFile(localH20, path = prosPath)

prostate.srch = h2o.glm(x = 3:9, y = 2, data = prostate.hex, family = "binomial”,
nlambda = 3, lambda_search = TRUE, nfolds = @)

random_lambda = sample(prostate.srch@model$params$lambda_all, 1)

random_model = h2o.getGLMLambdaModel (prostate.srch, random_lambda)

h2o.getLogPath 39

h2o.getLogPath Get Path Where H20 R Logs are Saved

Description

Get the file path where H20 R command and error response logs are currently being saved.

Usage

h2o.getLogPath(type)

Arguments
type Which log file’s path to get. Either "Command” for POST commands sent be-
tween R and H2O, or "Error"” for errors returned by H20 in the HTTP response.
See Also

h2o.startlLogging, h2o.stoplLogging, h2o.clearlLogs, h2o.openLog, h2o.setlLogPath

Examples

library(h20)
h2o.getlLogPath(”Command")
h2o.getlLogPath("Error")

h20.getModel Get Reference to H20 Model

Description

Get a reference to an existing H20 model.

Usage

h2o.getModel (h20, key)

Arguments
h2o An H20Client object containing the IP address and port of the server running
H20.
key A string indicating the unique hex key of the model to retrieve.
Value

Returns an object that is a subclass of H20Model.

40 h2o.getTimezone

Examples

library(h2o)
localH20 = h2o0.init()

iris.hex <- as.h2o(localH20, iris, "iris.hex")

model <- h2o.randomForest(x = 1:4, y = 5, data = iris.hex)
model.retrieved <- h2o.getModel (localH20, model@key)
h2o.shutdown(localH20)

h2o0.getTimezone Retrieves the time zone H20 is set to.

Description

h2o0.getTimezone, Retrieves the time zone H20 is set to.

Usage

h2o.getTimezone(client)

Arguments

client An H20Client object.

Details

Tells the user what time zone all Date features is relative to. By default H20 assumes that the
Date is collected in the same time zone that H20 is running under. To change the time zone before
importing a data frame or running as.Date on a column use h20.setTimezone and to see a list of
applicable time zones use h20.1listTimezones.

Value

Returns the name of the time zone H2O is set to.

Note

H20 will assume the same time zone as the user launching the H20O instance.

See Also

h2o.setTimezone, h2o0.listTimezones, as.Date.H20ParsedData

Examples

library(h2o)

localH20 = h2o.init()

Check the Timezone listed
currentTimeZone = h2o0.getTimezone(localH20)
print(currentTimeZone)

dates = c("Fri Jan 10 00:00:00 1969",
"Tue Jan 10 04:00:00 2068",

h2o0.glm 41

"Mon Dec 30 01:00:00 2002",
"Wed Jan 1 12:00:00 2003")
df = data.frame(dates)
hdf = as.h2o0(localH20, df, "hdf", TRUE)

Returns Dates assuming PST

hdf$ca = as.Date(hdf$dates, "%c")

Returns Dates assuming EST

h2o.listTimezones(localH20)
h2o.setTimezone(localH20, tz = "EST")
hdf$nyc = as.Date(hdf$dates, "%c")
hdf

h2o.glm H20: Generalized Linear Models

Description

Fit a generalized linear model, specified by a response variable, a set of predictors, and a description
of the error distribution.

Usage

h2o.glm(x, y, data, key = "", offset = NULL, family, link,
tweedie.p = ifelse(family == "tweedie”, 1.5, NA_real),
prior = NULL, nfolds = @, alpha = 0.5, lambda = le-5,
lambda_search = FALSE, nlambda = -1, lambda.min.ratio = -1,
max_predictors = -1, return_all_lambda = FALSE,
strong_rules = TRUE, standardize = TRUE, intercept = TRUE,
non_negative = FALSE, use_all_factor_levels = FALSE,
variable_importances = FALSE, epsilon = le-4, iter.max = 100,
higher_accuracy = FALSE, beta_constraints = NULL,
disable_line_search = FALSE)

Arguments

X A character vector containing the column names of the predictors in the model.

y A character string representing the response variable in the model.

data An H20ParsedData object containing the variables in the model.

key An optional unique hex key assigned to the resulting model. If none is given, a

key will automatically be generated.
offset An optional character string representing the offset term in the model.
family A character string specifying the error distribution of the model; one of "gaussian”,
"binomial”, "poisson”, "gamma”, and "tweedie".
link A character string specifying the link function. The default is the canonical link

for the family. The supported links for each of the family specifications are:

non n o n

"gaussian”: "identity”, "log”, "inverse”
"binomial”: "logit”, "log"

n o n

"poisson”: "log", "identity"

42

h2o0.gIm

n, n n o n

"gamma”: "inverse”, "log", "identity"

n, n

"tweedie": "tweedie”

J

tweedie.p A numeric specifying the power for the variance function when family = "tweedie”.

prior An optional numeric specifying the prior probability of class 1 in the response
when family = "binomial”. The default prior is the observational frequency
of class 1.

nfolds A non-negative integer specifying the number of folds for cross-validation and
nfolds = @ indicates no cross-validation.

alpha A numeric in [0, 1] specifying the elastic-net mixing parameter. The elastic-net
penalty is defined to be

P(a,) = (1= a)/2[B]13 +allBlh = Y _[(1 -)/267 + al5;l]
J
, making alpha = 1 the lasso penalty and alpha = @ the ridge penalty.

lambda A non-negative shrinkage parameter for the elastic-net, which multiplies P(c, 3)
in the objective. When lambda = 0, then no elastic-net penalty is applied and
ordinary generalized linear models are fit.

lambda_search A logical value indicating whether to conduct a search over the space of lambda
values starting from the 1ambda argument to 1ambda.min.ratio times the small-
est lambda that produces zeros for all the coefficient estimates.

nlambda The number of lambda values to use when lambda_search = TRUE.
lambda.min.ratio
A non-negative number that specifies the minimum value for lambda as a frac-
tion of smallest lambda that yields the zero vector for the coefficient estimates.

max_predictors When lambda_search = TRUE, a non-negative integer specifying an early stop-
ping rule for the maximum number of predictors in the model.
return_all_lambda
A logical value indicating whether to return every model built during the lambda
search. If return_all_lambda = FALSE, then only the model corresponding to
the optimal lambda will be returned.

strong_rules A logical value indicating whether to use strong rules to remove predictors with
gradients near zero at the starting solution prior to model training.

standardize A logical value indicating whether the numeric predictors should be standard-
ized to have a mean of 0 and a variance of 1 prior to training the models.

intercept A logical value indicating whether to include the intercept term in the models.
This will only have a practical effect in the presence of all numeric predictors.

non_negative A logical value indicating whether the coefficient estimates will be constrained
to be non-negative.

use_all_factor_levels
A logical value indicating whether dummy variables should be used for all factor
levels of the categorical predictors. When TRUE, results in an over parameterized
models.

variable_importances
A logical value indicating whether the variable importances should be com-
puted.

epsilon A non-negative number specifying the magnitude of the maximum difference

between the coefficient estimates from successive iterations. Defines the con-
vergence criterion for h2o.glm.

h2o0.glm

iter.max

higher_accuracy

43

A non-negative integer specifying the maximum number of iterations.

A logical value indicating whether to use line search to produce more accurate
estimates.

beta_constraints

A data.frame or H20OParsedData object with the columns ["names", "lower_bounds",
"upper_bounds", "beta_given"], where each row corresponds to a predictor in
the GLM. "names" contains the predictor names, "lower"/"upper_bounds", are
the lower and upper bounds of beta, and "beta_given" is some supplied starting
values for the coefficients.

disable_line_search

Value

A logical value indicating whether line search should be disabled.

An object of class H20GLMModel with slots key, data, model, and xval. The model slot is a list of
the following components:

coefficients
rank

family
deviance

aic
null.deviance
iter
df.residual
df.null

y

X

auc
training.err
threshold

confusion

A named vector of the coefficients estimated in the model.
The numeric rank of the fitted linear model.

The family of the error distribution.

The deviance of the fitted model.

Akaike’s Information Criterion for the final computed model.
The deviance for the null model.

Number of algorithm iterations to compute the model.
The residual degrees of freedom.

The residual degrees of freedom for the null model.

The response variable in the model.

A vector of the predictor variable(s) in the model.

Area under the curve.

Average training error.

Best threshold.

Confusion matrix.

The xval slot is a list of H20GLMModel objects representing the cross-validation models. (Each of
these objects themselves has xval equal to an empty list).

See Also

h2o.gbm, h20.randomForest

Examples

-- CRAN examples begin --

library(h20o)

localH20 = h2o.init()

Run GLM of CAPSULE ~ AGE + RACE + PSA + DCAPS
prostatePath = system.file("extdata”, "prostate.csv”, package = "h20")

prostate.hex =

h2o0.importFile(localH20, path = prostatePath, key = "prostate.hex")

44 h2o0.gsub

h2o.glm(y = "CAPSULE", x = c("AGE","RACE","PSA","DCAPS"), data = prostate.hex,
family = "binomial”, nfolds = @, alpha = 0.5, lambda_search = FALSE,
use_all_factor_levels = FALSE, variable_importances = FALSE,
higher_accuracy = FALSE)

Run GLM of VOL ~ CAPSULE + AGE + RACE + PSA + GLEASON

myX = setdiff(colnames(prostate.hex), c("ID", "DPROS", "DCAPS", "VOL"))

h2o.glm(y = "VOL", x = myX, data = prostate.hex, family = "gaussian”,
nfolds = @, alpha = 0.1, lambda_search = FALSE,
use_all_factor_levels = FALSE, variable_importances = FALSE,
higher_accuracy = FALSE)

-- CRAN examples end --

Not run:
GLM variable importance
Also see:
https://github.com/0xdata/h2o/blob/master/R/tests/testdir_demos/runit_demo_VI_all_algos.R
data.hex = h2o.importFile(
localH20,
path = "https://raw.github.com/@xdata/h2o/master/smalldata/bank-additional-full.csv”,
key = "data.hex")
myX = 1:20
myY="y"
my.glm = h2o.glm(x=myX, y=myY, data=data.hex, family="binomial”,
standardize=TRUE, use_all_factor_levels=TRUE,
higher_accuracy=TRUE, lambda_search=TRUE,
return_all_lambda=TRUE, variable_importances=TRUE)
best_model = my.glm@best_model
n_coeff = abs(my.glm@models[[best_model]]@model$normalized_coefficients)
VI = abs(n_coeff[-length(n_coeff)])
glm.VI = VI[order(VI,decreasing=T)]
print(glm.VI)

End(Not run)

h2o.gsub Pattern Replacement

Description

h20.gsub, a method for the h20. gsub base method.

Usage

h2o.gsub(pattern, replacement, x, ignore.case)

Arguments
pattern A regex or string to match on.
replacement A string that replaces the matched pattern.
X An H20ParsedData object with a single factor column.

ignore.case If TRUE, case will be ignored in the pattern match

h2o.hitRatio 45

Details

Matches a pattern and replaces all instances of the matched pattern with the replacement string.

Value

An object of class "H2OParsedData".

Examples

library(h2o)

localH20 <- h2o0.init(ip = "localhost”, port = 54321, startH20 = TRUE)

df <- data.frame(
V1 = c("HELLO WoR@&*LD", "the dOg ATE"”, "my friENd BOb Ace”, "mEow meOW"),
V2 = ¢(92318, 34891.123, 21,99))

hex <- as.h2o0(localH20, df)

h20.gsub("HELLO", "WHY HELLO THERE", hex$V1)

h2o.hitRatio Compute Hit Ratio from H2O Classification Predictions

Description

Compute the hit ratios from a prediction dataset and a column of actual (reference) responses in
H2O. The hit ratio is the percentage of instances where the actual class of an observation is in the
top k classes predicted by the model, where k is specified by the user. Note that the hit ratio can
only be calculated for classification models.

Usage

h2o.hitRatio(prediction, reference, k = 10, seed = 0)

Arguments
prediction An H20ParsedData object that represents the predicted response values. Must
have the same number of rows as reference.
reference An H20ParsedData object that represents the actual response values. (Must be
a single column).
k A positive integer indicating the maximum number of labels to use for hit ratio
computation. Cannot be larger than the size of the response domain.
seed (Optional) Random number seed for breaking ties between equal probabilities.
Value

Returns a numeric vector with the hit ratio for every level in the reference domain.

See Also

H20ParsedData

46 h2o.ignoreColumns

Examples
library(h20)
localH20 = h2o0.init()
irisPath = system.file("extdata”, "iris.csv", package = "h20")

iris.hex = h2o.importFile(localH20, path = irisPath)
iris.gbm = h2o.gbm(x = 1:4, y = 5, data = iris.hex)
iris.pred = h2o.predict(iris.gbm)
h2o.hitRatio(iris.pred, iris.hex[,5], k = 3)

h2o.ignoreColumns Returns columns’ names of a parsed H20 data object that are recom-
mended to be ignored in an analysis

Description

Returns columns’ names of a parsed H20ParsedData object if the columns have high counts of NA entries, t

Usage

h20.ignoreColumns(data, max_na = 0.2)

Arguments

data AnH20ParsedData object.

max_na A numeric between 0 and 1 representing the proportion of NAs in a column.
Value

Returns a vector of column names.

Examples
Not run:
library(h2o)
localH20 = h2o0.init()
airlinesURL = "https://s3.amazonaws.com/h2o-airlines-unpacked/allyears2k.csv”
airlines.hex = h2o.importFile(localH20, path = airlinesURL, key = "airlines.hex")

h2o.ignoreColumns(airlines.hex)

End(Not run)

h2o.importFile 47

h2o.importFile Import Local Data File

Description

Imports a file from the local path and parses it, returning an object containing the identifying hex
key.

Usage

nn nn

h2o.importFile(object, path, key = "", parse = TRUE, header, header_with_hash, sep = "",
col.names, parser_type="AUT0")

Arguments

object An H20Client object containing the IP address and port of the server running
H20.

path The path of the file to be imported. Each row of data appears as one line of the
file. If it does not contain an absolute path, the file name is relative to the current
working directory.

key (Optional) The unique hex key assigned to the imported file. If none is given, a
key will automatically be generated based on the file path.

parse (Optional) A logical value indicating whether the file should be parsed after
import.

header (Optional) A logical value indicating whether the first row is the column header.

If missing, H20 will automatically try to detect the presence of a header.
header_with_hash

(Optional) A logical value indicating whether the first row is a column header
that starts with a hash character. If missing, H20 will automatically try to detect
the presence of a header.

sep (Optional) The field separator character. Values on each line of the file are sep-
arated by this character. If sep = "", the parser will automatically detect the
separator.

col.names (Optional) A H20ParsedData object containing a single delimited line with the

column names for the file.

parser_type (Optional) Specify the type of data to be parsed. parser_type = "AUTO" is the
default, other acceptable values are "SVMLight", "XLS", and "CSV".

Details
WARNING: In H20, import is lazy! Do not modify the data on hard disk until after parsing is
complete.

Value
If parse = TRUE, the function returns an object of class H20ParsedData. Otherwise, when

parse = FALSE, it returns an object of class H20RawData.

48

See Also

h2o.importFolder

h2o.importFolder, h2o.importHDFS, h2o.importURL, h2o.uploadFile

Examples

library(h2o)

localH20 = h2o.init()

irisPath

system.file("extdata”, "iris.csv"”, package = "h20")

iris.hex = h2o.importFile(localH20, path = irisPath, key = "iris.hex")

class(iris.hex)
summary (iris.hex)

h2o.importFolder

Import Local Directory of Data Files

Description

Imports all the files in the local directory and parses them, concatenating the data into a single H20
data matrix and returning an object containing the identifying hex key.

Usage

h2o.importFolder(object, path, pattern =
header_with_hash, sep =

Arguments

object

path

key
pattern
parse

header

nn nn

, key = "", parse = TRUE, header,
, col.names, parser_type="AUT0")

nn

An H20Client object containing the IP address and port of the server running
H20.

The path of the folder directory to be imported. Each row of data appears as one
line of the file. If it does not contain an absolute path, the file name is relative to
the current working directory.

(Optional) The unique hex key assigned to the imported file. If none is given, a
key will automatically be generated based on the file path.

(Optional) Character string containing a regular expression to match file(s) in
the folder.

(Optional) A logical value indicating whether the file should be parsed after
import.

(Optional) A logical value indicating whether the first row is the column header.
If missing, H20 will automatically try to detect the presence of a header.

header_with_hash

sep

col.names

parser_type

(Optional) A logical value indicating whether the first row is a column header
that starts with a hash character. If missing, H20 will automatically try to detect
the presence of a header.

(Optional) The field separator character. Values on each line of the file are sep-
arated by this character. If sep = "", the parser will automatically detect the
separator.

(Optional) An H20ParsedData object containing a single delimited line with the
column names for the file.

(Optional) Specify the type of data to be parsed. parser_type = "AUTO" is the
default, other acceptable values are "SVMLight", "XLS", and "CSV".

h2o0.importHDFS 49

Details

This method imports all the data files in a given folder and concatenates them together row-wise
into a single matrix represented by a H20ParsedData object. The data files must all have the same
number of columns, and the columns must be lined up in the same order, otherwise an error will be
returned.

WARNING: In H20, import is lazy! Do not modify the data files on hard disk until after parsing is
complete.

Value

If parse = TRUE, the function returns an object of class H20ParsedData. Otherwise, when
parse = FALSE, it returns an object of class H20RawData.

See Also

h2o.importFile, h2o.importHDFS, h2o.importURL, h2o.uploadFile

Examples

Not run:

library(h20)

localH20 = h20.init()

myPath = system.file("extdata"”, "prostate_folder"”, package = "h20")
prostate_all.hex = h2o.importFolder(localH20, path = myPath)
class(prostate_all.hex)

summary (prostate_all.hex)

End(Not run)

h20.importHDFS Import from HDFS

Description

Imports a HDFS file or set of files in a directory and parses them, returning a object containing the
identifying hex key.

Usage

nn

h2o.importHDFS(object, path, pattern = , key = "" parse = TRUE, header,
header_with_hash, sep = "", col.names, parser_type="AUT0")

Arguments
object An H20Client object containing the IP address and port of the server running
H20.
path The path of the file or folder directory to be imported. If it does not contain an
absolute path, the file name is relative to the current working directory.
pattern (Optional) Character string containing a regular expression to match file(s) in

the folder.

50

key

parse

header

h2o0.importHDFS

(Optional) The unique hex key assigned to the imported file. If none is given, a
key will automatically be generated based on the file path.

(Optional) A logical value indicating whether the file should be parsed after
import.

(Optional) A logical value indicating whether the first row is the column header.
If missing, H20 will automatically try to detect the presence of a header.

header_with_hash

sep

col.names

parser_type

Details

(Optional) A logical value indicating whether the first row is a column header
that starts with a hash character. If missing, H20 will automatically try to detect
the presence of a header.

(Optional) The field separator character. Values on each line of the file are sep-
arated by this character. If sep = "", the parser will automatically detect the
separator.

(Optional) A H20ParsedData object containing a single delimited line with the
column names for the file.

(Optional) Specify the type of data to be parsed. parser_type = "AUTO" is the
default, other acceptable values are "SVMLight", "XLS", and "CSV".

When path is a directory, this method acts like h2o0. importFolder and concatenates all data files
in the folder into a single ValueArray object.

WARNING: In H20, import is lazy! Do not modify the data files on hard disk until after parsing is

complete.

Value

If parse = TRUE, the function returns an object of class H20ParsedData. Otherwise, when

parse = FALSE, it

See Also

h2o.importFile,

Examples

Not run:

returns an object of class H20RawData.

h2o.importFolder, h2o.importURL, h2o.uploadFile

This is an example of how to import files from HDFS.
The user must modify the path to his or her specific HDFS path for this example to run.

library(h2o)

localH20 = h2o0.init()

iris.hex = h2o.importHDFS(localH20, path

paste("hdfs://192.168.1.161",

"datasets/runit/iris_wheader.csv”, sep = "/"), parse = TRUE)

class(iris.hex)
summary (iris.hex)

iris.fv = h2o.importHDFS(localH20, path = paste("hdfs://192.168.1.161",
"datasets/runit/iris_wheader.csv”, sep = "/"), parse = TRUE, version = 2)

class(iris.fv)

iris_folder.hex =

h20.importHDFS(localH20, path = paste("hdfs://192.168.1.161",

"datasets/runit/iris_test_train”, sep = "/"))
summary (iris_folder.hex)

End(Not run)

h2o0.importURL 51

h20. importURL Import Data from URL

Description

Imports a file from the URL and parses it, returning an object containing the identifying hex key.

Usage

nn nn

h2o.importURL (object, path, key = "", parse = TRUE, header, header_with_hash, sep = "",
col.names, parser_type="AUT0")

Arguments

object An H20Client object containing the IP address and port of the server running
H20.

path The complete URL of the file to be imported. Each row of data appears as one
line of the file.

key (Optional) The unique hex key assigned to the imported file. If none is given, a
key will automatically be generated based on the URL path.

parse (Optional) A logical value indicating whether the file should be parsed after
import.

header (Optional) A logical value indicating whether the first row is the column header.

If missing, H20 will automatically try to detect the presence of a header.
header_with_hash

(Optional) A logical value indicating whether the first row is a column header

that begins with a hash character. If missing, H20 will automatically try to

detect the presence of a header.

sep (Optional) The field separator character. Values on each line of the file are sep-
arated by this character. If sep = "", the parser will automatically detect the
separator.

col.names (Optional) A H20ParsedData object containing a single delimited line with the

column names for the file.

parser_type (Optional) Specify the type of data to be parsed. parser_type = "AUTO" is the
default, other acceptable values are "SVMLight", "XLS", and "CSV".

Details
WARNING: In H20, import is lazy! Do not modify the data on hard disk until after parsing is
complete.

Value
If parse = TRUE, the function returns an object of class H20ParsedData. Otherwise, when

parse = FALSE, it returns an object of class H20RawData.

See Also

h2o.importFile, h2o.importFolder, h2o.importHDFS, h2o.uploadFile

52 h2o.impute

Examples

Not run:

library(h20o)

localH20 = h2o0.init()

prostate.hex = h2o.importURL(localH20, path = paste("https://raw.github.com”,
"@xdata/h2o/master/smalldata/logreg/prostate.csv”, sep = "/"), key = "prostate.hex")

class(prostate.hex)

summary (prostate. hex)

End(Not run)

h2o.impute Impute A Column of Data

Description

Impute a column of data using the mean, median, or mode. Optionally impute based on groupings
of additional columns.

Usage

h2o.impute(data, column, method, groupBy)

Arguments
data An H20ParsedData object
column The column to be imputed. Must be a single column, but may be an index, the
column name, or a quoted column.
method The method describing how to impute the column, one of "mean", "median", or
"mode". If the column is a factor, then "mode" is forced by H20.
groupBy If ‘groupBy* is not NULL, then the missing values are imputed using the mean/median/mode
of ‘column* within the groups formed by the groupBy columns.
Value

No return value, but the H20ParsedData object is imputed in place.

Examples

library(h2o)
localH20 = h20.init()

randomly repalce 50 rows in each column of the iris dataset with NA
ds <- iris

ds[sample(nrow(ds), 50),1] <- NA

ds[sample(nrow(ds), 50),2] <- NA

ds[sample(nrow(ds), 50),3] <- NA

ds[sample(nrow(ds), 50),4] <- NA

ds[sample(nrow(ds), 50),5] <- NA

upload the NA'ed dataset to H20

h2o.init 53

hex <- as.h2o0(localH20, ds)
head(hex)

impute the numeric column in place with "median”
h2o.impute(hex, .(Sepal.Length), method = "median")

impute with the mean based on the groupBy columns Sepal.Length and Petal.Width and Species
h2o.impute(hex, 2, method = "mean”, groupBy = .(Sepal.Length, Petal.Width, Species))

impute the Species column with the "mode” based on the columns 1 and 4
h2o.impute(hex, 5, method = "mode”, groupBy = c(1,4))

h2o.init Connect to H20 and Install R Package

Description

Connects to a running H20 instance and checks the local H20 R package is the correct version (i.e.
that the version of the R package and the version of H20O are the same).

Usage

h2o.init(ip = "127.0.0.1", port = 54321, startH20 = TRUE, forceDL = FALSE, Xmx,
beta = FALSE, assertion = TRUE, license = NULL,
nthreads = -2, max_mem_size, min_mem_size,
ice_root = NULL, strict_version_check = TRUE, data_max_factor_levels = 1000000,
many_cols = FALSE, chunk_bytes = 22)

Arguments

ip Object of class "character” representing the IP address of the server where
H20 is running.

port Object of class "numeric” representing the port number of the H20 server.

startH20 (Optional) A logical value indicating whether to try to start H20 from R if no
connection with H20 is detected. This is only possible if ip = "localhost”
orip = "127.0.0.1". If an existing connection is detected, R does not start
H20.

forceDL (Optional) A logical value indicating whether to force download of the H20 exe-
cutable. Defaults to FALSE, so the executable will only be downloaded if it does
not already exist in the h2o R library resources directory h2o/java/h2o. jar.
This value is only used when R starts H20.

Xmx DEPRECATED A string specifying the maximum size, in bytes, of the memory
allocation pool to H20. This value must a multiple of 1024 greater than 2MB.
Append the letter m or M to indicate megabytes, or g or G to indicate gigabytes.
This value is only used when R starts H20.

beta (Optional) A logical value indicating whether H20 should be launch in beta
mode. This value is only used when R starts H20.

assertion (Optional) A logical value indicating whether H20 should be launched with
assertions enabled. Used mainly for error checking and debugging purposes.
This value is only used when R starts H20.

54 h2o.init
license (Optional) A string value specifying the full path of the license file. This value
is only used when R starts H20.
nthreads (Optional) Number of threads in the thread pool. This relates very closely to the
number of CPUs used. -2 means use the CRAN default of 2 CPUs. -1 means use
all CPUs on the host. A positive integer specifies the number of CPUs directly.
This value is only used when R starts H20.
max_mem_size (Optional) A string specifying the maximum size, in bytes, of the memory al-
location pool to H20. This value must a multiple of 1024 greater than 2MB.
Append the letter m or M to indicate megabytes, or g or G to indicate gigabytes.
This value is only used when R starts H20.
min_mem_size (Optional) A string specifying the minimum size, in bytes, of the memory al-
location pool to H20. This value must a multiple of 1024 greater than 2MB.
Append the letter m or M to indicate megabytes, or g or G to indicate gigabytes.
This value is only used when R starts H20.
ice_root (Optional) A directory specifying where H20 should write log files and spill to
disk (if needed). Default is tempdir(). This value is only used when R starts
H20.
strict_version_check
(Optional) Setting this to FALSE is unsupported and should only be done when
advised by technical support.
data_max_factor_levels
(Optional) The limit for the number of factor levels that may appear in a single
column. Default is 1,000,000.
many_cols (Optional) Enables improved handling of high-dimensional datasets. Same as
-chunk_bytes 24.
chunk_bytes (Optional) Not in combination with -many_cols. The log (base 2) of chunk size
in bytes. (The default is 22, which leads to a chunk size of 4.0 MB.).
Details
This method first checks if H20 is connectible. If it cannot connect and startH20 = TRUE with IP
of localhost, it will attempt to start an instance of H20 with IP = localhost, port = 54321. Otherwise,
it stops immediately with an error.
When initializing H20 locally, this method searches for h20.jar in the R library resources (system. file("java"”, "h2o.
and if the file does not exist, it will automatically attempt to download the correct version from
Amazon S3. The user must have Internet access for this process to be successful.
Once connected, the method checks to see if the local H20 R package version matches the version
of H20 running on the server. If there is a mismatch and the user indicates she wishes to upgrade,
it will remove the local H20 R package and download/install the H20 R package from the server.
Value
Once the package is successfully installed, this method will load it and return a H20Client object
containing the IP address and port number of the H20 server. See the H20 R package documenta-
tion for more details, or type ??h2o0 in the R console.
Note

Users may wish to manually upgrade their package (rather than waiting until being prompted),
which requires that they fully uninstall and reinstall the H20 package, and the H20 client package.
You must unload packages running in the environment before upgrading. It’s recommended that
users restart R or R studio after upgrading.

http://docs.h2o.ai/userguide/topR.html
http://docs.h2o.ai/userguide/topR.html

h2o.insertMissing Values 55

See Also

h2o0.shutdown

Examples

Not run:

Try to connect to a local H20 instance that is already running.

If not found, start a local H20 instance from R with the default settings.
localH20 = h2o.init()

Try to connect to a local H20 instance.
If not found, raise an error.
localH20 = h2o.init(startH20 = FALSE)

Try to connect to a local H20 instance that is already running.

If not found, start a local H20 instance from R with 5 gigabytes of memory and the
default number of threads (two).

localH20 = h2o.init(max_mem_size = "5g")

Try to connect to a local H20 instance that is already running.

If not found, start a local H20 instance from R that uses as many threads as you
have CPUs and 5 gigabytes of memory.

localH20 = h2o.init(nthreads = -1, max_mem_size = "5g")

End(Not run)

h20.insertMissingValues
Replace Entries in H20 Data Set with Missing Value

Description

Replaces a user-specified fraction of entries in a H20 dataset with missing values.

Usage
h2o.insertMissingValues(data, fraction = 0.01, seed = -1)
Arguments
data An H20ParsedData object representing the dataset.
fraction A number between 0 and 1 indicating the fraction of entries to replace with
missing values.
seed A random number used to select which entries to replace with missing values.
If seed = -1, one will automatically be generated by H20.
Details

This method modifies the input dataset in place.

Value

Returns an H20ParsedData object that represents the dataset with missing values inserted.

56 h2o.interaction

Examples
library(h2o)
localH20 = h2o0.init()
irisPath = system.file("extdata”, "iris.csv"”, package = "h20")

iris.hex = h2o.importFile(localH20, path = irisPath)
summary (iris.hex)

iris.hex = h2o.insertMissingValues(iris.hex, fraction = 0.25)
head(iris.hex)
summary(iris.hex)
h2o.interaction Create interaction terms between categorical features of an H20

Frame

Description

Create N-th order interaction terms between categorical features of an H20 Frame, N=0,1,2,3....

Usage

h2o.interaction(data, key=NULL, factors, pairwise, max_factors, min_occurrence)

Arguments

data An H20ParsedData object containing the variables in the model.

key The unique hex key assigned to the created frame which has one extra column
appended.

factors Factor columns for which interactions are to be computed. If only one is speci-
fied, this can be used to reduce the factor levels.

pairwise Whether to create pairwise quadratic interactions between factors (otherwise
create one higher-order interaction). Only applicable if there are 3 or more fac-
tors.

max_factors Max. number of factor levels in pair-wise interaction terms (if enforced, one

extra catch-all factor will be made).

min_occurrence Min. occurrence threshold for factor levels in pair-wise interaction terms.

Value

Returns an H20 data frame.

Examples

library(h20)
localH20 = h2o0.init()

Create some random data

myframe = h2o.createFrame(localH20, 'framekey', rows = 20, cols = 5,
seed = -12301283, randomize = TRUE, value = 0,
categorical_fraction = 0.8, factors = 10, real_range = 1,
integer_fraction = 0.2, integer_range = 10,
binary_fraction = @, binary_ones_fraction = 0.5,

h2o0.kmeans 57

missing_fraction = 0.2,
response_factors = 1)
myframe[,3] <- as.factor(myframe[,3])
summary (myframe)
head(myframe, 20)

Create pairwise interactions

pairwise <- h2o.interaction(myframe, key = 'pairwise', factors = list(c(1,2),c(2,3,4)),
pairwise=TRUE, max_factors = 10, min_occurrence = 1)

head(pairwise, 20)

levels(pairwise[,2])

Create 5-th order interaction

higherorder <- h2o.interaction(myframe, key = 'higherorder', factors = c(1,2,3,4,5),
pairwise=FALSE, max_factors = 10000, min_occurrence = 1)

head(higherorder, 20)

Create a categorical variable out of integer column via self-interaction,

and keep at most 3 factors, and only if they occur at least twice

summary (myframe[, 3])

head(myframe[,3], 20)

trim_integer_levels <- h2o.interaction(myframe, key = 'trim_integers', factors = c(3),
pairwise = FALSE, max_factors = 3, min_occurrence = 2)

head(trim_integer_levels, 20)

Put all together and clean up temporaries

myframe <- cbind(myframe, pairwise, higherorder, trim_integer_levels)

myframe <- h2o.assign(myframe, 'final.key')

h2o.rm(localH20, grep(pattern = "Last.value”, x = h20.1s(localH20)$Key, value = TRUE))
myframe

head(myframe, 20)

summary (myframe)

h2o.shutdown(localH20)

h2o.kmeans H20: K-Means Clustering

Description

Performs k-means clustering on a data set.

Usage

nn nn

, key = , iter.max = 10,
@, dropNACols = FALSE)

h2o0.kmeans(data, centers, cols =
normalize = FALSE, init = "none"”, seed

Arguments
data An H20ParsedData object containing the variables in the model.
centers The number of clusters k.
cols (Optional) A vector containing the names of the data columns on which k-means

runs. If blank, k-means clustering will be run on the entire data set.

58

h2o.listTimezones

key (Optional) The unique hex key assigned to the resulting model. If none is given,
a key will automatically be generated.

iter.max (Optional) The maximum number of iterations allowed.

normalize (Optional) A logical value indicating whether the data should be normalized

before running k-means.

init (Optional) Method by which to select the k initial cluster centroids. Possible val-
ues are "none” for random initialization, "plusplus” for k-means++ initializa-
tion, and "furthest"” for initialization at the furthest point from each successive
centroid. See the H20 K-means documentation for more details.

seed (Optional) Random seed used to initialize the cluster centroids.

dropNACols (Optional) A logical value indicating whether to drop columns with more than
10% entries that are NA.

Value

An object of class H20KMeansModel with slots key, data, and model, where the last is a list of the
following components:

centers A matrix of cluster centers.

cluster A H20ParsedData object containing the vector of integers (from 1 to k), which
indicate the cluster to which each point is allocated.

size The number of points in each cluster.

withinss Vector of within-cluster sum of squares, with one component per cluster.

tot.withinss Total within-cluster sum of squares, i.e., sum(withinss).

See Also

h2o.importFile, h2o.importFolder, h2o.importHDFS, h2o.importURL, h2o.uploadFile

Examples

library(h2o)

localH20 = h2o.init()

prosPath = system.file("extdata"”, "prostate.csv”, package = "h20")

prostate.hex = h2o.importFile(localH20, path = prosPath)

h2o.kmeans(data = prostate.hex, centers = 10, cols = c("AGE"”, "RACE", "VOL", "GLEASON"))

h20.listTimezones Prints out a list of time zone names

Description

h20.1listTimezones, Prints out a list of time zone names.

Usage

h2o.listTimezones(client)

http://docs.h2o.ai/datascience/kmeans.html

h2o.loadAll 59

Arguments

client An H20Client object.

Details

Prints out a list of time zones that can be used as input for h20.setTimezone.

Value

Prints out a list with the Standard Offset, Canonical ID, and Aliases of each time zone.

Note

The function does a print out of a list, the output is not a R list.

See Also

h20.setTimezone, h2o0.getTimezone, as.Date.H20ParsedData

Examples

library(h2o)
localH20 = h2o0.init()
h2o.listTimezones(localH20)

h20.1loadAll Load all H20 Model in a directory.

Description

Load all H2OModel object in a directory from disk that was saved using h2o.saveModel or h20.saveAll.

Usage
h20.loadAll(object, dir = "")

Arguments
object An H20Client object containing the IP address and port of the server running
H20.
dir The directory multiple H20 model files to be imported from.
Value

Returns H2OModel objects of the class corresponding to the type of model built. Ex: A saved
model built using GLM will return a H2OGLMModel object.

See Also

h20.saveModel,h2o0.saveAll, h2o.loadModel, H20Model

60 h2o.loadModel

Examples

Not run:
library(h2o)
localH20 = h20.init()
prosPath = system.file("extdata"”, "prostate.csv”, package = "h20")
prostate.hex = h2o.importFile(localH20, path = prosPath, key = "prostate.hex")
prostate.glm = h2o.glm(y = "CAPSULE", x = c("AGE","RACE","PSA","DCAPS"),
data = prostate.hex, family = "binomial”, nfolds = 10, alpha = 0.5)
prostate.gbm = h2o.gbm(y = "CAPSULE", x = c("AGE","RACE","PSA","DCAPS"), n.trees=3,
interaction.depth=1, distribution="multinomial”, data = prostate.hex)
h20.saveAll(object = localH20, dir = "/Users/UserName/Desktop”, save_cv = TRUE, force = TRUE)
h2o.removeAll (object = conn)
model.load = h2o.loadModel(localH20, dir = "/Users/UserName/Desktop”)
prostate.glm = model.load[[1]]
prostate.gbm = model.load[[2]]

End(Not run)

h20.loadModel Load a H20 Model.

Description

Load a H20Model object from disk that was saved using h2o0.saveModel.

Usage
h2o.loadModel (object, path = "")
Arguments
object An H20Client object containing the IP address and port of the server running
H20.
path The path of the H20 model file to be imported.
Value

Returns a H20OModel object of the class corresponding to the type of model built. Ex: A saved
model built using GLM will return a H2OGLMModel object.

See Also
h20.saveModel,h2o.saveAll, h2o0.loadAll, H20Model

Examples

Not run:

library(h20)

localH20 = h2o.init()

prosPath = system.file("extdata”, "prostate.csv”, package = "h20")
prostate.hex = h2o.importFile(localH20, path = prosPath, key = "prostate.hex")
prostate.glm = h2o.glm(y = "CAPSULE", x = c("AGE","RACE","PSA", "DCAPS"),

h2o0.logAndEcho 61

data = prostate.hex, family = "binomial”, nfolds = 10, alpha = 0.5)
glmmodel.path = h20.saveModel(object = prostate.glm, dir = "/Users/UserName/Desktop")
glmmodel.load = h2o.loadModel(localH20, glmmodel.path)

End(Not run)

h20.logAndEcho Write and Echo Message to H20 Log

Description

Write a user-defined message to the H20 Java log file and echo it back to the user.

Usage

h2o.logAndEcho(conn, message)

Arguments
conn An H20Client object containing the IP address and port of the server running
H20.
message A character string to write to the H20 Java log file.
See Also

H20Client, h2o.downloadAlllLogs

Examples

library(h2o)
localH20 = h2o0.init()
h2o.logAndEcho(localH20, "Test log and echo method.")

h20.1s Obtain a list of H20 keys from the running instance of H20

Description

Allows users to access a list of object keys in the running instance of H20

Usage

h2o.1s(object, pattern)

Arguments
object An H20Client object containing the IP address and port number of the H20
server.
pattern A string indicating the type of key to be returned. When pattern is left is un-

specified all keys are returned.

62 h2o0.makeGLMModel

Value

Returns a list of hex keys in the current instance of H20, and their associated sizes in bytes.

Examples

library(h20)

localH20 = h2o.init()

prosPath = system.file("extdata”, "prostate.csv”, package="h20")

prostate.hex = h2o.importFile(localH20, path = prosPath, key = "prostate.hex")
s = runif(nrow(prostate.hex))

prostate.train = prostate.hex[s <= 0.8,]

prostate.train = h2o.assign(prostate.train, "prostate.train”)

h20.1s(localH20)

h20.makeGLMModel Create a GLM Model.

Description

The user can modified the coefficients in an already built GLM Model, modified GLM model will
have warning attached letting the user know that it is a modified and hand made model object that
is not built using native h2o.glm function.

Usage

h20.makeGLMModel (model, beta)

Arguments
model An H20GLMModel object whose coefficients will be changed.
beta A named vector of the coefficients that will replace the coefficients named vector
in the model.
Value

Returns an object of class H20GLMModel with slots key, data, model, and xval.

See Also
h2o0.glm, H20GLMModel

Examples

-- CRAN examples begin --
library(h20o)
localH20 = h2o0.init()

Run GLM of CAPSULE ~ AGE + RACE + PSA + DCAPS

prostatePath = system.file("extdata”, "prostate.csv”, package = "h20")

prostate.hex = h2o.importFile(localH20, path = prostatePath, key = "prostate.hex")

prostate.glm = h2o.glm(y = "CAPSULE"”, x = c("AGE","RACE","PSA","DCAPS"), data = prostate.hex,
family = "binomial”, nfolds = @, alpha = 0.5, lambda_search = FALSE,
use_all_factor_levels = FALSE, variable_importances = FALSE,

h2o0.month 63

higher_accuracy = FALSE)

Change coefficient for AGE variable to 0.5

coeff = prostate.glm@model$coefficients

coeff["AGE"] = 0.5

prostate.glm2 = h2o.makeGLMModel (model = prostate.glm, beta = coeff)
-- CRAN examples end --

h2o.month Convert Milliseconds to Months in H2O0 Dataset

Description

Converts the entries of a H20ParsedData object from milliseconds to months (on a 0 to 11 scale).
Usage
h2o0.month(x)

S3 method for class 'H20ParsedData’
month (x)

Arguments

X An H20ParsedData object.

Details

This method calls the functions of the MutableDateTime class in Java.

Value

A H20ParsedData object containing the entries of x converted to months of the year.

See Also

h2o.year

h2o0.mse Returns the mean squared error from H20 Classification Predictions

Description
Returns the mean squared error calculated froma column of predicted responses and a column of
actual (reference) responses in H20.

Usage

h2o.mse(data, reference)

64 h2o.naiveBayes

Arguments
data An H20ParsedData object that represents the predicted response values. (Must
be a single column).
reference An H20ParsedData object that represents the actual response values. Must have
the same dimensions as data.
Value

Returns the mean squared error as a continuous real numeric.

See Also

H20ParsedData

Examples

library(h2o)

localH20 = h2o0.init()

prosPath = system.file("extdata”, "prostate.csv”, package="h20")

prostate.hex = h2o.importFile(localH20, path = prosPath)

prostate.glm = prostate.glm = h2o.glm(x = c("RACE","PSA","DCAPS"), y = "AGE",
data = prostate.hex, family = "gaussian”, nfolds = 10, alpha = 0.5)

prostate.pred = h2o.predict(prostate.glm)

h2o.mse(prostate.pred[,1], prostate.hex[,2])

h20.naiveBayes H20: Naive Bayes Classifier

Description

Builds gradient boosted classification trees, and gradient boosted regression trees on a parsed data

set.
Usage
h2o.naiveBayes(x, y, data, key = "", laplace = @, dropNACols = FALSE)
Arguments
X A vector containing the names of the predictors in the model.
y The name of the response variable in the model.
data AnH20ParsedData (version = 2) object containing the variables in the model.
key (Optional) The unique hex key assigned to the resulting model. If none is given,
a key will automatically be generated.
laplace (Optional) A positive number controlling Laplace smoothing. The default (0)
disables Laplace smoothing.
dropNACols (Optional) A logical value indicating whether to drop predictor columns with

>=20% NAs.

h2o.nFoldExtractor 65

Details

The naive Bayes classifier assumes independence between predictor variables conditional on the
response, and a Gaussian distribution of numeric predictors with mean and standard deviation com-
puted from the training dataset.

When building a naive Bayes classifier, every row in the training dataset that contains at least one
NA will be skipped completely. If the test dataset has missing values, then those predictors are
omitted in the probability calculation during prediction.

Value

An object of class H20NBModel with slots key, data, and model, where the last is a list of the
following components:

laplace A positive number controlling Laplace smoothing. The default (0) disables
Laplace smoothing.

levels Categorical levels of the dependent variable.

apriori Total occurrences of each level of the dependent variable.

apriori_prob A-priori class distribution for the dependent variable.

tables A list of tables, one for each predictor variable. For categorical predictors, the
table displays, for each attribute level, the conditional probabilities given the
target class. For numeric predictors, the table gives, for each target class, the
mean and standard deviation of the variable.

See Also

For more information see: http://docs.h20.ai

Examples

library(h20o)
localH20 = h2o.init()

Build naive Bayes classifier with categorical predictors

votesPath = system.file("extdata”, "housevotes.csv”, package="h20")
votes.hex = h2o.importFile(localH20, path = votesPath, header = TRUE)
summary(votes.hex)

h2o.naiveBayes(y = 1, x = 2:17, data = votes.hex, laplace = 3)

Build naive Bayes classifier with numeric predictors
irisPath = system.file("extdata”, "iris.csv", package="h20")
iris.hex = h2o.importFile(localH20, path = irisPath)
h2o.naiveBayes(y = 5, x = 1:4, data = iris.hex)

h2o.nFoldExtractor Extract N-fold holdout splits from H20 Data Set

Description

Split an existing H20 data set into N folds and return a specified holdout split, and the rest.

66 h2o0.openLog

Usage

h2o.nFoldExtractor(data, nfolds, fold_to_extract)

Arguments
data An H20ParsedData object representing the dataset to split.
nfolds A numeric value indicating the total number of folds created.

fold_to_extract
A numeric value indicating which fold to hold out.

Value

Returns a list of objects of class H20ParsedData, each corresponding to one of the splits.

Examples
library(h2o)
localH20 = h2o.init(ip = "localhost”, port = 54321, startH20 = TRUE)
irisPath = system.file("extdata”, "iris.csv", package = "h20")

iris.hex = h2o.importFile(localH20, path = irisPath)

iris.folds = h2o.nFoldExtractor(iris.hex, nfolds=10, fold_to_extract = 4)
head(iris.folds[[1]])

summary(iris.folds[[1]1]1)

head(iris.folds[[2]])

summary(iris.folds[[2]])

h20.openlLog View H20 R Logs

Description

Open existing logs of H20 R POST commands and error responses on local disk. Used primarily
for debugging purposes.

Usage

h2o.openLog(type)

Arguments
type Which log file to open. Either "Command” for POST commands sent between R
and H20, or "Error" for errors returned by H20 in the HTTP response.
See Also

h2o.startlLogging, h2o.stopLogging, h2o.clearLogs, h2o.getLogPath, h2o.setlLogPath

h2o.order 67

Examples

Not run:

Skip running this to avoid windows being opened during R CMD check
library(h20)

localH20 = h20.init()

h2o.startLogging()

ausPath = system.file("extdata”, "australia.csv", package="h20")
australia.hex = h2o.importFile(localH20, path = ausPath)
h2o.stopLogging()

h20.openLog("Command")
h2o.openLog("Error™)

End(Not run)

h2o.order Returns a permutation which rearranges its first argument into ascend-
ing or descending order.

Description
Allows users to find the row indices of entries with the highest or lowest value. To limit the need to
do a global search the user can choose the number of indices returned from h2o.order.

Usage

h2o.order(data, cols, n = 5, decreasing = T)

Arguments
data AnH20ParsedData object.
cols A vector containing the names or indices of the data columns chosen to be re-
moved.
n A integer. The number of indices returned, indicating the n rows ordered.
decreasing Logical. Indicates whether sort should be in increasing or decreasing order.
Examples
library(h20)

localH20 = h2o0.init()
prosPath = system.file("extdata”, "prostate.csv”, package="h20")
prostate.hex = h2o.importFile(localH20, path = prosPath, key = "prostate.hex")

Find ID of the 10 youngest patients in data

indices = h2o.order(data = prostate.hex$AGE, n = 10, decreasing = TRUE)
indices.R = as.matrix(indices)

youngest_patients = prostate.hex[indices.R]

68 h2o.parseRaw

h20.parseRaw Parse Raw Data File

Description

Parses a raw data file, returning an object containing the identifying hex key.

Usage

nn

h2o.parseRaw(data, key = , header, header_with_hash, sep = "", col.names,
parser_type="AUT0")

Arguments
data An H20RawData object to be parsed.
key (Optional) The hex key assigned to the parsed file.
header (Optional) A logical value indicating whether the first row is the column header.

If missing, H20 will automatically try to detect the presence of a header.
header_with_hash

(Optional) A logical value indicating whether the first row is a column header

that begins with a hash character. If missing, H20 will automatically try to

detect the presence of a header.

sep (Optional) The field separator character. Values on each line of the file are sep-
arated by this character. If sep = "", the parser will automatically detect the
separator.

col.names (Optional) A H20ParsedData object containing a single delimited line with the

column names for the file.

parser_type (Optional) Specify the type of data to be parsed. parser_type = "AUTO" is the
default, other acceptable values are "SVMLight", "XLS", and "CSV".
Details

After the raw data file is parsed, it will be automatically deleted from the H20O server.

Value

An object of class H20ParsedData, representing the dataset that was parsed.

See Also

h2o.importFile, h2o.importFolder, h2o.importHDFS, h2o.importURL, h2o.uploadFile

Examples

library(h2o)

localH20 = h2o0.init()

prosPath = system.file("extdata”, "prostate.csv”, package="h20")
prostate.raw = h2o.importFile(localH20, path = prosPath, parse = FALSE)
Do not modify prostate.csv on disk at this point!

prostate.hex = h2o.parseRaw(data = prostate.raw, key = "prostate.hex")
After parsing, it is okay to modify or delete prostate.csv

h2o.pcr 69

h2o.pcr H20: Principal Components Regression

Description

Runs GLM regression on PCA results, and allows for transformation of test data to match PCA
transformations of training data.

Usage

h2o.pcr(x, y, data, key = "", ncomp, family, nfolds = 10, alpha = 0.5, lambda = 1e-05,
epsilon = 1e-05, tweedie.p)

Arguments

X A vector containing the names of the predictors in the model.

y The name of the response variable in the model.

data An H20ParsedData object containing the variables in the model.

key (Optional) The unique hex key assigned to the resulting model. If none is given,
a key will automatically be generated.

ncomp A number indicating the number of principal components to use in the regression
model.

family A description of the error distribution and corresponding link function to be used
in the model. Currently, Gaussian, binomial, Poisson, gamma, and Tweedie are
supported.

nfolds (Optional) Number of folds for cross-validation. The default is 10.

alpha (Optional) The elastic-net mixing parameter, which must be in [0,1]. The penalty
is defined to be

P(a,) = (1= a)/2/|Bl15 +allBlh = D _[(1 -)/267 + al5;l]
J

so alpha=1 is the lasso penalty, while alpha=0 is the ridge penalty.

lambda (Optional) The shrinkage parameter, which multiples P(c, 3) in the objective.
The larger 1ambda is, the more the coefficients are shrunk toward zero (and each
other).

epsilon (Optional) Number indicating the cutoff for determining if a coefficient is zero.

tweedie.p The index of the power variance function for the tweedie distribution. Only used
if family = "tweedie”

Details

This method standardizes the data, obtains the first ncomp principal components using PCA (in
decreasing order of standard deviation), and then runs GLM with the components as the predictor
variables.

Value

h2o.pcr

An object of class H20GLMModel with slots key, data, model and xval. The slot model is a list of the
following components:

coefficients
rank

family
deviance

aic
null.deviance
iter
df.residual
df.null

y

X

auc
training.err
threshold

confusion

A named vector of the coefficients estimated in the model.
The numeric rank of the fitted linear model.

The family of the error distribution.

The deviance of the fitted model.

Akaike’s Information Criterion for the final computed model.
The deviance for the null model.

Number of algorithm iterations to compute the model.
The residual degrees of freedom.

The residual degrees of freedom for the null model.

The response variable in the model.

A vector of the predictor variable(s) in the model.

Area under the curve.

Average training error.

Best threshold.

Confusion matrix.

The slot xval is a list of H20GLMModel objects representing the cross-validation models. (Each of
these objects themselves has xval equal to an empty list).

See Also

h2o0.prcomp, h2o.glm

Examples

Not run:
library(h2o)

localH20 = h2o.init()

Run PCR on Prostate Data

prostate.hex = h2o.importURL(localH20, path = paste("https://raw.github.com”,
"@xdata/h2o/master/smalldata/logreg/prostate.csv”, sep = "/"), key = "prostate.hex")

h2o.pcr(x = c("AGE","RACE","PSA","DCAPS"), y = "CAPSULE", data = prostate.hex, family = "binomial”,
nfolds = @, alpha = 0.5, ncomp = 2)

End(Not run)

h2o.performance

71

h2o.performance

Performance Measures

Description

Evaluate the predictive performance of a model via various measures.

Usage

h2o.performance(data, reference, measure = "accuracy"”, thresholds, gains = TRUE, ...

Arguments

data

reference

measure

thresholds

gains

Value

An H20ParsedData object containing the predicted outcome scores. Must be a
single column with the same number of rows as reference.

An H20ParsedData object containing the actual outcomes for comparison. Must
be a single binary column with all entries in {0,1}.

A character string indicating the performance measure to optimize. Must be one
of the following:

* F1: Fl score, equal to 2 * (Precision * Recall)/ Precision + Recall

* accuracy: Accuracy of model, estimated as (TP + TN)/(P + N).

* precision: Precision of model, estimated as TP/(TP + FP).

* recall: Recall of model, i.e. the true positive rate TP/ P.

 specificity: Specificity of model, i.e. the true negative rate TN/N.

* max_per_class_error: Maximum per class error in model.
(Optional) A numeric vector from O to 1 indicating the threshold values at which
to compute the performance measure. If missing, the range will be automatically

generated. TODO: Still not sure I understand what exactly these thresholds are,
is it the FPR or something else?

If TRUE, then ‘h2o.performance‘ will additionally compute the gains and lift
charts. These can be accessed via @gains

Additional arguments to pass to the ‘h20.gains‘ method. Accepts "percents" and
"groups".

An object of class H20PerfModel with slots cutoffs, measure, perf (the performance measure se-
lected), roc (data frame used to plot ROC) and model, where the last is a list of the following

components:

auc

gini
best_cutoff
F1

accuracy
precision

recall

Area under the curve.

Gini coefficient.

Threshold value that optimizes the performance measure.
F1 score at best cutoff.

Accuracy value at best cutoff.

Precision value at best cutoff.

Recall value at best cutoff.

72

specificity

h2o.prcomp

Specificity value at best cutoff.

max_per_class_err

confusion

Examples

library(h2o)

Maximum per class error at best cutoff.

Confusion matrix at best cutoff.

localH20 = h2o0.init()

Run GBM classification on prostate.csv
prosPath = system.file("extdata”, "prostate.csv”, package = "h20")

prostate.hex =
prostate.gbhm =

h2o.importFile(localH20, path = prosPath, key = "prostate.hex")
h2o.gbm(y = 2, x = 3:9, data = prostate.hex)

Calculate performance measures at threshold that maximizes precision
prostate.pred = h2o.predict(prostate.gbm)

head(prostate.pred)

h2o.performance(prostate.pred[,3], prostate.hex$CAPSULE, measure = "precision”)

h2o.prcomp

Principal Components Analysis

Description

Performs principal components analysis on the given data set.

Usage

h2o.prcomp(data, tol = @, cols = "", max_pc = 5000, key = "", standardize = TRUE,

retx = FALSE)

Arguments

data
tol

max_pc

cols

key

standardize

retx

An H20ParsedData object on which to run principal components analysis.

(Optional) A value indicating the magnitude below which components should
be omitted. (Components are omitted if their standard deviations are less than
or equal to tol times the standard deviation of the first component.) With the
default setting tol = @, no components are omitted.

Integer value denoting the number of principle components returned in the out-
put as a R data frame. By default all of the components up to 5000 components
will be shown but for much larger number of components it’s best to show a
subset.

(Optional) A vector of column names or indices indicating the features to per-
form PCA on. By default, all columns in the dataset are analyzed.

(Optional) The unique hex key assigned to the resulting model. If none is given,
a key will automatically be generated.

(Optional) A logical value indicating whether the variables should be shifted to
be zero centered and scaled to have unit variance before the analysis takes place.

(Optional) A logical value indicating whether the rotated variables should be
returned.

h2o.predict 73

Details

The calculation is done by a singular value decomposition of the (possibly standardized) data set.

Value

An object of class H20PCAModel with slots key, data, and model, where the last is a list of the
following components:

standardized A logical value indicating whether the data was centered and scaled.

sdev The standard deviations of the principal components (i.e., the square roots of the
eigenvalues of the covariance/correlation matrix).
rotation The matrix of variable loadings (i.e., a matrix whose columns contain the eigen-
vectors).
Note

The signs of the columns of the rotation matrix are arbitrary, and so may differ between different
programs for PCA.

See Also
h2o.pcr
Examples
library(h2o)
localH20 = h2o.init()
ausPath = system.file("extdata”, "australia.csv", package="h20")

australia.hex = h2o.importFile(localH20, path = ausPath)
australia.pca = h2o.prcomp(data = australia.hex, standardize = TRUE)
print(australia.pca)

h2o.predict H20 Model Predictions

Description

Obtains predictions from various fitted H20 model objects.

Usage
h2o.predict(object, newdata, ...)
Arguments
object A fitted H20Model object for which prediction is desired.
newdata (Optional) A H20ParsedData object in which to look for variables with which

to predict. If omitted, the data used to fit the model object@data are used.

Additional arguments to pass to h2o.predict. In particular variable num_pc for
predicting on H20PCAModel object is implemented.

74 h2o.randomForest

Details

This method dispatches on the type of H20 model to select the correct prediction/scoring algorithm.

Value

A H20ParsedData object containing the predictions.

See Also

h2o.glm, h2o.kmeans, h2o.randomForest, h2o.prcomp, h2o.gbm, h2o.deeplearning

Examples

library(h2o)

localH20 = h20.init()

Run GLM of CAPSULE ~ AGE + RACE + PSA + DCAPS

prostatePath = system.file("extdata”, "prostate.csv”, package = "h20")

prostate.hex = h2o.importFile(localH20, path = prostatePath, key = "prostate.hex")

prostate.glm = h2o.glm(y = "CAPSULE"”, x = c("AGE","RACE","PSA","DCAPS"), data = prostate.hex,
family = "binomial”, nfolds = @, alpha = 0.5)

Get fitted values of prostate dataset

prostate.fit = h2o.predict(object = prostate.glm, newdata = prostate.hex)

summary (prostate.fit)

h20.randomForest H20: Random Forest

Description

Performs random forest classification on a data set.

Usage

h2o.randomForest(x, y, data, key = "", classification = TRUE, ntree = 50,
depth = 20, mtries = -1, sample.rate = 2/3, nbins = 20, seed = -1,
importance = FALSE, score.each.iteration = FALSE, nfolds = @, validation,
holdout.fraction = @, nodesize = 1, balance.classes = FALSE,
max.after.balance.size = 5, class.sampling.factors = NULL, doGrpSplit = TRUE,
verbose = FALSE, oobee = TRUE, stat.type = "ENTROPY", type = "fast")

Arguments

X A vector containing the names or indices of the predictor variables to use in
building the random forest model.

y The name or index of the response variable. If the data does not contain a header,
this is the column index, designated by increasing numbers from left to right.
(The response must be either an integer or a categorical variable).

data An H20ParsedData object containing the variables in the model.

key (Optional) The unique hex key assigned to the resulting model. If none is given,

a key will automatically be generated.

h2o.randomForest 75

classification (Optional) A logical value indicating whether a classification model should be
built (as opposed to regression).

ntree (Optional) Number of trees to grow. (Must be a nonnegative integer).
depth (Optional) Maximum depth to grow the tree.
mtries (Optional) Number of variables randomly sampled as candidates at each split.

If set to -1, defaults to sqrtp for classification, and p/3 for regression, where p is
the number of predictors.

sample.rate (Optional) Sampling rate for constructing data from which individual trees are
grown.

nbins (Optional) Build a histogram of this many bins, then split at best point.

seed (Optional) Seed for building the random forest. If seed = -1, one will auto-

matically be generated by H20.

importance (Optional) A logical value indicating whether to calculate variable importance.
Set to FALSE to speed up computations.

score.each.iteration
(Optional) A logical value indicating whether to perform scoring after every

iteration. Set to FALSE to speed up computations. Note that this can only be set
to TRUE if type = "BigData".

nfolds (Optional) Number of folds for cross-validation. If nfolds >= 2, then validation
must remain empty.

validation (Optional) An H20ParsedData object indicating the validation dataset used to
construct confusion matrix. If left blank, this defaults to the training data when
nfolds = 0.

holdout.fraction
(Optional) Fraction of the training data to hold out for validation.

nodesize (Optional) Number of nodes to use for computation.

balance.classes
(Optional) Balance training data class counts via over/under-sampling (for im-
balanced data)

max.after.balance.size
Maximum relative size of the training data after balancing class counts (can be
less than 1.0)

class.sampling.factors
Desired over/under-sampling ratios per class (lexicographic order).

doGrpSplit Check non-contiguous group splits for categorical predictors

verbose (Optional) A logical value indicating whether verbose results should be returned.

stat.type (Optional) Type of statistic to use, equal to either "ENTROPY" or "GINI" or
"TWOING".

oobee (Optional) A logical value indicating whether to calculate the out of bag error
estimate.

type (Optional) Default is "fast" mode, which builds trees in parallel and distributed,

but requires all of the data to fit on a single node. Alternate mode is "BigData"
mode, which builds a random forest layer-by-layer across your cluster and scales
to any size data set.

76 h2o.rebalance

Value

An object of class H20DRFModel with slots key, data, and model, where the last is a list of the
following components:

ntree Number of trees grown.
mse Mean-squared error for each tree.
forest A matrix giving the minimum, mean, and maximum of the tree depth and num-

ber of leaves.

confusion Confusion matrix of the prediction.

Examples

-- CRAN examples begin --
Run an RF model on iris data

library(h2o)
localH20 = h2o.init()
irisPath = system.file("extdata”, "iris.csv"”, package = "h20")

iris.hex = h2o.importFile(localH20, path = irisPath, key = "iris.hex")
h2o.randomForest(y = 5, x = c¢(2,3,4), data = iris.hex, ntree = 50, depth = 100)
-- CRAN examples end --

Not run:
RF variable importance
Also see:
https://github.com/0xdata/h2o/blob/master/R/tests/testdir_demos/runit_demo_VI_all_algos.R
data.hex = h2o.importFile(
localH20,
path = "https://raw.github.com/@xdata/h2o/master/smalldata/bank-additional-full.csv”,
key = "data.hex")
myX = 1:20
myY="y"
my.rf = h2o.randomForest(x=myX, y=myY,data=data.hex,classification=T,ntree=100, importance=T)
rf.vI = my.rf@model$varimp
print(rf.VI)

End(Not run)

h2o.rebalance Rebalance a H20 data frame

Description

Rebalance (repartition) an existing H20 data set into given number of chunks (per Vec), for load-
balancing across multiple threads or nodes. Does not alter data.

Usage

h2o.rebalance(data, chunks, key)

h2o.remove Vecs 77

Arguments
data An H20ParsedData object representing the dataset to rebalance.
chunks A numeric value indicating how many chunks to rebalance the dataset into. Sug-
gested: Around 4 chunks per CPU core.
key Destination key for rebalanced H20ParsedData object.
Value

Returns the rebalanced object of class H20ParsedData.

Examples
library(h2o)
localH20 = h2o.init(ip = "localhost”, port = 54321, startH20 = TRUE)
irisPath = system.file("extdata”, "iris.csv", package = "h20")

iris.hex = h2o.importFile(localH20, path = irisPath)

iris.reb = h2o.rebalance(iris.hex, chunks = 32)

summary (iris.reb)

iris.reb2 = h2o.rebalance(iris.hex, chunks = 32, key = "iris.rebalanced”)
summary (iris.reb2)

h20.removeVecs Removes columns or vectors from H20ParsedData objects instead of
making a copy of the data without the specified columns.

Description

Allows users to remove columns from H20 objects. This call acts on the H20 server through the R
console as well as update the associated named object in the R environment.

Usage

h2o.removeVecs(data, cols)

Arguments
data AnH20ParsedData object.
cols A vector containing the names or indices of the data columns chosen to be re-
moved.
See Also

h2o.rm, cbind

78 h2o0.rm

Examples

library(h2o)

localH20 = h2o0.init()

prosPath = system.file("extdata”, "prostate.csv”, package="h20")

prostate.hex = h2o.importFile(localH20, path = prosPath, key = "prostate.hex")

Remove ID and GLEASON column from prostate data
prostate.hex = h2o.removeVecs(prostate.hex, c('ID', 'GLEASON'))
summary (prostate.hex)

h20.rm Removes H20 objects from the server where H20 is running.

Description

Allows users to remove H20 objects from the server where the instance of H20 is running. This
call acts on the H2O server through the R console, and does NOT remove the associated named
object from the R environment.

Usage

h2o.rm(object, keys)

Arguments
object An H20Client object containing the IP address and port of the server running
H20.
keys the hex key associated with the object to be removed.
Note

Users may wish to remove an H20 object on the server that is associated with an object in the R
environment. Recommended behavior is to also remove the object in the R environment. See the
second example at the end of this section.

See Also

h20.assign, h20.1s

Examples

Remove an H20 object from the server where H20 is running.

library(h20o)

localH20 = h2o0.init()

prosPath = system.file("extdata”, "prostate.csv”, package="h20")

prostate.hex = h2o.importFile(localH20, path = prosPath, key = "prostate.hex")

Remove an H20 object from the server and from the R environment
h20.1s(localH20)

h2o.rm(object = localH20, keys = "prostate.hex")
remove(prostate.hex)

h20.1s(localH20)

h2o.runif 79

h2o.runif Produces a vector of specified length contain random uniform numbers

Description

Produces a vector of random uniform numbers.

Usage
h2o.runif(x, min = @, max = 1, seed = -1)
Arguments
X An H20ParsedData object with number of rows equal to the number of elements
the vector of random numbers should have.
min An integer specifying the lower bound of the distribution.
max An integer specifying the upper bound of the distribution.
seed (Optional) Random seed used to generate draws from the uniform distribution.
The default of -1 results in a seed equal to the current system time in millisec-
onds.
Details

x must be a H20ParsedData object so that H20 can generate random numbers aligned with the
dataset for efficient large-scale sampling and filtering.

Value

A vector of random, uniformly distributed numbers. The elements are between 0 and 1 unless
otherwise specified.

Examples

library(h2o)

localH20 = h2o0.init()

prosPath = system.file("extdata”, "prostate.csv”, package="h20")

prostate.hex = h2o.importFile(localH20, path = prosPath, key = "prostate.hex")
s = h2o.runif(prostate.hex)

summary(s)

prostate.train = prostate.hex[s <= 0.8,]

prostate.train = h2o.assign(prostate.train, "prostate.train")
prostate.test = prostate.hex[s > 0.8,]

prostate.test = h2o.assign(prostate.test, "prostate.test")
nrow(prostate.train) + nrow(prostate.test)

80 h2o.saveAll

h2o.sample Sample an H20 Data Set

Description

Sample an existing H20 Frame by number of observations.

Usage

h2o.sample(data, nobs, seed)

Arguments
data An H20ParsedData object representing the dataset to sample.
nobs The number of observations to be in the resulting frame.
seed A seed for repeatable sampling.

Value

Returns an H20ParsedData containing ‘nobs‘ number of rows, sampled at random.

Examples

library(h2o)
localH20 = h2o0.init()
hex <- as.h2o0(localH20, iris)

sample the data
a <- h2o.sample(hex, nobs = 99)

check that the number of rows is 99
dim(a)

h20.saveAll Save all H2OModel objects to disk.

Description

Save all H20OModel objects to a disk and can be loaded back into H20 using h20.loadModel or
h2o0.loadAll.

Usage

h2o.saveAll(object, dir="", save_cv = TRUE, force=FALSE)

h2o.saveModel 81

Arguments
object An H20Client object.
dir Directory the model files will be written to.
save_cv (Optional) If save_cv = TRUE all associated cross validation will be saved in
the same base directory as the main model. If you don’t save cross validation
models, there will be warnings when loading the model.
force (Optional) If force = TRUE any existing file will be overwritten. Otherwise if
the file already exists the operation will fail.
Value

Returns paths of model objects saved.

See Also

h20.saveModel,h20.10adAll, h2o.loadModel, H20Model

Examples

Not run:

library(h2o)

localH20 = h20.init()

prostate.hex = h2o.importFile(localH20, path = paste("https://raw.github.com”,
"@xdata/h2o/master/smalldata/logreg/prostate.csv”, sep = "/"), key = "prostate.hex")

prostate.glm = h2o.glm(y = "CAPSULE", x = c("AGE","RACE","PSA","DCAPS"),
data = prostate.hex, family = "binomial”, nfolds = 10, alpha = 0.5)

prostate.gbm = h2o.gbm(y = "CAPSULE", x = c("AGE","RACE","PSA","DCAPS"), n.trees=3,
interaction.depth=1, distribution="multinomial”, data = prostate.hex)

h20.saveModel (object = prostate.glm, dir = "/Users/UserName/Desktop”, save_cv = TRUE, force = TRUE)

h20.saveAll(object = localH20, dir = "/Users/UserName/Desktop”, save_cv = TRUE, force = TRUE)

End(Not run)

h20.saveModel Save a H2OModel object to disk.

Description

Save a H20OModel object to a disk and can be loaded back into H20 using h2o0.loadModel.

Usage

h2o.saveModel (object, dir="", name="", save_cv = TRUE, force=FALSE)
Arguments

object An H20Model object.

dir Directory the model file will be written to.

name Name of the file being saved.

82 h2o.setLogPath

save_cv (Optional) If save_cv = TRUE all associated cross validation will be saved in
the same base directory as the main model. If you don’t save cross validation
models, there will be warnings when loading the model.

force (Optional) If force = TRUE any existing file will be overwritten. Otherwise if
the file already exists the operation will fail.

Value

Returns path of model object saved.

See Also

h20.saveAll, h2o.loadModel, h2o0.loadAll, H20Model

Examples

Not run:

library(h2o)

localH20 = h2o.init()

prostate.hex = h2o.importFile(localH20, path = paste("https://raw.github.com”,
"@xdata/h2o/master/smalldata/logreg/prostate.csv”, sep = "/"), key = "prostate.hex")

prostate.glm = h2o.glm(y = "CAPSULE", x = c("AGE","RACE","PSA", "DCAPS"),
data = prostate.hex, family = "binomial”, nfolds = 10, alpha = 0.5)

h20.saveModel(object = prostate.glm, dir = "/Users/UserName/Desktop”, save_cv = TRUE, force = TRUE)

End(Not run)

h2o.setLogPath Set Path Where H20 R Logs are Saved

Description

Set the file path where H20 R command and error response logs are currently being saved.

Usage

h2o.setLogPath(path, type)

Arguments
path A character string indicating the new file path where logs should be saved.
type Which log file’s path to modify. Either "Command” for POST commands sent
between R and H2O, or "Error” for errors returned by H20 in the HTTP re-
sponse.
See Also

h2o.startlLogging, h2o.stopLogging, h2o.clearLogs, h2o.openLog, h2o.getlLogPath

h2o.setTimezone 83

Examples

library(h2o)
h2o.getlLogPath("Command")
h20.setlLogPath(getwd(), "Command")
h2o.getlLogPath(”Command")

h20.setTimezone Sets the time zone for the H2O client object.

Description

h2o.getTimezone, Sets the time zone for the H2O client object.

Usage

h2o.setTimezone(client, tz)

Arguments
client An H20Client object.
tz A string that is the ID for a timezone, use h20.1istTimezones for appropriate
ID.
Details

Allows the user to set the time zone all Date features is relative to. By default H20 assumes that the
Date is collected in the same time zone that H20 is running under. To change the time zone before
importing a data frame or running as.Date on a column use h20.setTimezone and to see a list of
applicable time zones use h2o0.1istTimezones.

Value

Returns the name of the time zone H2O is set to.

Note

H20 will assume the same time zone as the user launching the H20 instance.

See Also

h2o.getTimezone, h2o.listTimezones, as.Date.H20ParsedData

Examples

library(h20o)

localH20 = h2o.init()

Check the Timezone listed
currentTimeZone = h2o0.getTimezone(localH20)
print(currentTimeZone)

dates = c("Fri Jan 10 00:00:00 1969",
"Tue Jan 10 04:00:00 2068",

84 h2o.shutdown

"Mon Dec 30 01:00:00 2002",
"Wed Jan 1 12:00:00 2003")
df = data.frame(dates)
hdf = as.h2o0(localH20, df, "hdf", TRUE)

Returns Dates assuming PST

hdf$ca = as.Date(hdf$dates, "%c")

Returns Dates assuming EST

h2o.listTimezones(localH20)
h2o.setTimezone(localH20, tz = "EST")
hdf$nyc = as.Date(hdf$dates, "%c")
hdf

h20.shutdown Shutdown H20 server

Description

Shuts down the specified H20 instance. All data on the server will be lost!

Usage

h2o.shutdown(client, prompt = TRUE)

Arguments
client An H20Client client containing the IP address and port of the server running
H20.
prompt (Optional) A logical value indicating whether to prompt the user before shutting
down the H20 server.
Details

This method checks if H20 is running at the specified IP address and port, and if it is, shuts down
that H20 instance. WARNING: All data, models, and other values stored on the server will be lost!
Only call this function if you and all other clients connected to the H20O server are finished and have
saved your work.

Note

Users must call h2o.shutdown explicitly in order to shut down the local H2O instance started by R.
If R is closed before H20, then an attempt will be made to automatically shut down H20O. This only
applies to local instances started with h20.init, not remote H20O servers.

See Also

h20.init

h20.SpeeDRF

Examples

85

Don't run automatically to prevent accidentally shutting down a cloud

Not run:
library(h2o)

localH20 = h2o0.init()
h2o0.shutdown(localH20)

End(Not run)

h20.SpeeDRF

H20: Single-Node Random Forest

Description

Performs single-node random forest classification on a data set.

Usage

h2o.SpeeDRF(x, y, data, key = "", classification = TRUE, nfolds = @, validation,
holdout.fraction = @, mtries = -1, ntree = 50, depth = 20, sample.rate = 2/3,

oobee = TRUE,

importance = FALSE, nbins = 1024, seed = -1,

stat.type = "ENTROPY", balance.classes = FALSE, verbose = FALSE)

Arguments

X

data
key

classification

nfolds

validation

A vector containing the names or indices of the predictor variables to use in
building the random forest model.

The name or index of the response variable. If the data does not contain a header,
this is the column index, designated by increasing numbers from left to right.
(The response must be either an integer or a categorical variable).

An H20ParsedData object containing the variables in the model.

(Optional) The unique hex key assigned to the resulting model. If none is given,
a key will automatically be generated.

(Optional) A logical value indicating whether a classification model should be
built (as opposed to regression).

(Optional) Number of folds for cross-validation. If nfolds >= 2, thenvalidation
must remain empty.

(Optional) An H20ParsedData object indicating the validation dataset used to
construct confusion matrix. If left blank, this defaults to the training data when
nfolds = 0.

holdout.fraction

mtries

ntree

depth

(Optional) Fraction of the training data to hold out for validation.

(Optional) Number of features to randomly select at each split in the tree. If set
to the default of -1, this will be set to sqrt(ncol(data)), rounded down to the
nearest integer.

(Optional) Number of trees to grow. (Must be a nonnegative integer).

(Optional) Maximum depth to grow the tree.

86

sample.rate

oobee

importance

nbins

seed

stat.type

balance.classes

verbose

Details

h20.SpeeDRF

(Optional) Sampling rate for constructing data from which individual trees are
grown.

(Optional) A logical value indicating whether to calculate the out of bag error
estimate.

(Optional) A logical value indicating whether to compute variable importance
measures. (If set to TRUE, the algorithm will take longer to finish.)

(Optional) Build a histogram of this many bins, then split at best point.

(Optional) Seed for building the random forest. If seed = -1, one will auto-
matically be generated by H20.

(Optional) Type of statistic to use, equal to either "ENTROPY" or "GINI" or
"TWOING".

(Optional) A logical value indicating whether classes should be rebalanced. Use
for datasets where the levels of the response class are very unbalanced.

(Optional) A logical value indicating whether verbose results should be returned.

IMPORTANT: Currently, you must initialize H20 with the flag beta = TRUE in h20.1init in order

to use this method!

This method runs random forest model building on a single node, as opposed to the multi-node
implementation in h2o. randomForest.

Value

An object of class H20SpeeDRFModel with slots key, data, valid (the validation dataset), and model,
where the last is a list of the following components:

params
ntree
depth
nbins
classification

mse

confusion

See Also

Input parameters for building the model.
Number of trees grown.

Depth of the trees grown.

Number of bins used in building the histogram.

Logical value indicating if the model is classification.
Mean-squared error for each tree.

Confusion matrix of the prediction.

H20SpeeDRFModel, h2o0.randomForest

Examples

Not run:
library(h2o)

localH20 = h2o0.init()
irisPath = system.file("extdata”, "iris.csv"”, package = "h20")
iris.hex = h2o.importFile(localH20, path = irisPath, key = "iris.hex")

h20.SpeeDRF (x =

End(Not run)

c(2,3,4), y = 5, data = iris.hex, ntree = 50, depth = 100)

h2o.splitFrame 87

h2o.splitFrame Split an H20 Data Set

Description

Split an existing H20 data set according to user-specified ratios.

Usage

h2o.splitFrame(data, ratios = 0.75, shuffle = FALSE)

Arguments
data An H20ParsedData object representing the dataset to split.
ratios A numeric value or array indicating the ratio of total rows contained in each
split.
shuffle A logical value indicating whether to shuffle the rows before splitting.
Value

Returns a list of objects of class H20ParsedData, each corresponding to one of the splits.

Examples
library(h20o)
localH20 = h2o0.init()
irisPath = system.file("extdata”, "iris.csv", package = "h20")

iris.hex = h2o.importFile(localH20, path = irisPath)
iris.split = h2o.splitFrame(iris.hex, ratios = c(0.2, 0.5))
head(iris.split[[1]1])

summary(iris.split[[1]1])

h2o.startlLogging Start Writing H20 R Logs

Description
Begin logging H20 R POST commands and error responses to local disk. Used primarily for
debugging purposes.

Usage

h2o.startlLogging()

See Also

h2o.stopLogging, h2o.clearLogs, h2o.openLog, h2o.getlLogPath, h2o.setLogPath

88 h2o.sub

Examples

library(h2o)

localH20 = h2o0.init()

h2o.startLogging()

ausPath = system.file("extdata”, "australia.csv", package="h20")
australia.hex = h2o.importFile(localH20, path = ausPath)
h2o.stopLogging()

h2o.stopLogging Stop Writing H20 R Logs

Description

Halt logging of H20 R POST commands and error responses to local disk. Used primarily for
debugging purposes.

Usage
h2o0.stopLogging()

See Also
h2o.startlLogging, h2o.clearlLogs, h2o.openLog, h2o.getlLogPath, h2o0.setlLogPath

Examples

library(h2o)

localH20 = h2o.init()

h2o.startLogging()

ausPath = system.file("extdata”, "australia.csv”, package="h20")
australia.hex = h2o.importFile(localH20, path = ausPath)
h2o.stopLogging()

h20.sub Pattern Replacement

Description

h20. sub, a method for the sub base method.

Usage

h2o.sub(pattern, replacement, x, ignore.case)

Arguments
pattern A regex or string to match on.
replacement A string that replaces the matched pattern.
X An H20ParsedData object with a single factor column.

ignore.case If TRUE, case will be ignored in the pattern match

h2o.table 89

Details

Matches a pattern and replaces first instance of the matched pattern with the replacement string.
Differs from h20.gsub that does a global substitution for all instances of the matched pattern.

Value

An object of class "H2OParsedData".

Examples

library(h20)

localH20 <- h2o0.init(ip = "localhost”, port = 54321, startH20 = TRUE)

df <- data.frame(
V1 = c("HELLO WoR@&*LD", "the dOg ATE", "my friENd BOb Ace”, "mEow meOW"),
V2 = ¢(92318, 34891.123, 21,99))

hex <- as.h2o0(localH20, df)

h20.sub("HELLO", "WHY HELLO THERE", hex$V1)

h2o.table Cross Tabulation of H20 Data

Description

Uses the cross-classifying factors to build a table of counts at each combination of factor levels.

Usage
h2o.table(x, return.in.R = FALSE)

Arguments
X An H20ParsedData object with at most two integer or factor columns.
return.in.R A logical value indicating whether the result should be converted into an R table.
Value

If return.in.R = FALSE, a H20ParsedData object containing the contingency table. This will just
be the counts of each factor level when x has a single column. If return.in.R = TRUE, the H20
result will be pulled into R and converted into a table object.

Examples

library(h2o)

localH20 = h2o.init()

prosPath = system.file("extdata”, "prostate.csv”, package="h20")

prostate.hex = h2o.importFile(localH20, path = prosPath, key = "prostate.hex")
summary (prostate.hex)

Counts of the ages of all patients
head(h2o.table(prostate.hex[,3]1))
h2o.table(prostate.hex[,3], return.in.R = TRUE)

Two-way table of ages (rows) and race (cols) of all patients

90 h2o.uploadFile

head(h2o.table(prostate.hex[,c(3,4)1))
h2o.table(prostate.hex[,c(3,4)], return.in.R = TRUE)

h2o0.uploadFile Upload Local Data File

Description

Uploads a file from the local drive and parses it, returning an object containing the identifying hex
key.

Usage
h2o.uploadFile(object, path, key = "", parse = TRUE, header, header_with_hash,
sep = "", col.names, silent = TRUE, parser_type="AUTO0")
Arguments
object An H20Client object containing the IP address and port of the server running
H20.
path The complete URL or normalized file path of the file to be imported. Each row
of data appears as one line of the file.
key (Optional) The unique hex key assigned to the imported file. If none is given, a
key will automatically be generated based on the URL path.
parse (Optional) A logical value indicating whether the file should be parsed after
import.
header (Optional) A logical value indicating whether the first line of the file contains

column headers. If left empty, the parser will try to automatically detect this.
header_with_hash

(Optional) A logical value indicating whether the first line of the file contain a

column header that begins with a hash character. If left empty, the parser will

try to automatically detect this.

sep (Optional) The field separator character. Values on each line of the file are sep-
arated by this character. If sep = "", the parser will automatically detect the
separator.

col.names (Optional) A H20ParsedData object containing a single delimited line with the
column names for the file.

silent (Optional) A logical value indicating whether or not to display an upload progress
bar.

parser_type (Optional) Specify the type of data to be parsed. parser_type = "AUTO" is the
default, other acceptable values are "SVMLight", "XLS", and "CSV".
Details

WARNING: In H20, import is lazy! Do not modify the data on hard disk until after parsing is
complete.

h2o.year 91

Value

If parse = TRUE, the function returns an object of class H20ParsedData. Otherwise, when
parse = FALSE, it returns an object of class H20RawData.

See Also

h2o.importFile, h2o.importFolder, h2o.importHDFS, h2o.importURL

Examples

library(h2o)

localH20 = h2o.init()

prosPath = system.file("extdata”, "prostate.csv”, package = "h20")
prostate.hex = h2o.uploadFile(localH20, path = prosPath, key = "prostate.hex")
class(prostate.hex)

summary (prostate.hex)

h2o.year Convert Milliseconds to Years in H2O Dataset

Description
Converts the entries of a H20ParsedData object from milliseconds to years, indexed starting from
1900.

Usage

h20.year(x)

S3 method for class 'H20ParsedData’
year(x)
Arguments

X An H20ParsedData object

Details

This method calls the functions of the MutableDateTime class in Java.

Value
A H20ParsedData object containing the entries of x converted to years starting from 1900, e.g. 69
corresponds to the year 1969.

See Also

h2o0.month

92 H20DeepLearningGrid-class

H20Client-class Class "H20Client"

Description

An object representing the server/local machine on which H20 is running.

Objects from the Class

Objects can be created by calls of the form new("H20Client”, ...)

Slots

ip: Object of class "character” representing the IP address of the H20 server.

port: Object of class "numeric” representing the port number of the H20 server.

Methods
h2o.importFile signature(object = "H20Client", path = "character”, + key = "character”, parse =
h2o.importFolder signature(object = "H20Client"”, path = "character”, + parse = "logical”):
h2o.importURL signature(object = "H20Client"”, path = "character”, + key = "character”, parse =

show signature(object = "H20Client"): ...

Examples

showClass("H20Client")

H20DeepLearningGrid-class
Class "H20DeepLearningGrid”

Description

Object representing the models built by a H20 Deep Learning neural networks grid search.

Objects from the Class

Objects can be created by calls of the form new("H20DeepLearningGrid”, ...).

Slots

key: Object of class "character”, representing the unique hex key that identifies the model.
data: Object of class "H20ParsedData"”, which is the input data used to build the model.

model: Objectof class "1ist"” containing "H20DeepLearningModel” objects representing the mod-
els returned by the Deep Learning neural networks grid search.

sumtable: Object of class "1ist” containing summary statistics of all the models returned by the
Deep Learning neural networks grid search.

H20ODeepLearningModel-class 93

Extends
Class "H20Grid", directly.

Methods

No methods defined with class "H20ODeepLearningGrid" in the signature.

See Also

H20DeepLearningModel, h2o.deeplearning

Examples

showClass("H20DeepLearningGrid")

H20DeeplLearningModel-class
Class "H20DeepLearningModel”

Description

A class for representing Deep Learning neural network models.

Objects from the Class

Objects can be created by calls of the form new("H20DeepLearningModel”, ...).

Slots

key: Object of class "character”, representing the unique hex key that identifies the model.
data: Object of class H20ParsedData, which is the input data used to build the model.
model: Object of class "1ist"” containing the following elements:

e confusion: The confusion matrix of the response, with actual observations as rows and
predicted values as columns.

e train_class_err: Classification error on the training dataset.

e train_sqr_err: Mean-squared error on the training dataset.

e train_cross_entropy: Cross-entropy on the training dataset.

* valid_class_err: Classification error on the validation dataset.

* valid_sqgr_err: Mean-squared error on the validation dataset.

e valid_cross_entropy: Cross-entropy on the validation dataset.

valid: Object of class "H20ParsedData”, representing the validation data set.

xval: List of objects of class "H20DeepLearningModel”, representing the n-fold cross-validation
models.

Extends

Class "H20Model", directly.

94 H20ODRFGrid-class

Methods

show signature(object = "H20DeepLearningModel”): ...

See Also

h2o0.deeplearning

Examples

showClass("H20DeepLearningModel”)

H20DRFGrid-class Class "H20DRFGrid”

Description

Object representing the models built by a H20 distributed random forest grid search.

Objects from the Class

Objects can be created by calls of the form new(”H20DRFGrid”, ...).

Slots

key: Object of class "character”, representing the unique hex key that identifies the model.
data: Object of class "H20ParsedData"”, which is the input data used to build the model.

model: Object of class "list"” containing "H20DRFModel” objects representing the models re-
turned by the distributed random forest grid search.

sumtable: Object of class "1ist"” containing summary statistics of all the models returned by the
distributed random forest grid search.

Extends

Class "H20Grid", directly.

Methods
No methods defined with class "H20ODRFGrid" in the signature.

See Also

H20DRFModel, h2o.randomForest

Examples

showClass("H20DRFGrid")

H20ODRFModel-class 95

H20DRFModel-class Class "H20DRFModel"”

Description

A class for representing random forest ensembles.

Objects from the Class

Objects can be created by calls of the form new(”H20DRFModel”, ...).

Slots
key: Object of class "character”, representing the unique hex key that identifies the model.
data: Object of class "H20ParsedData"”, which is the input data used to build the model.
model: Object of class "1ist"” containing the following elements:

e type: The type of the tree, which at this point must be classification.
e ntree: Number of trees grown.
* oob_err: Out of bag error rate.

e forest: A matrix giving the minimum, mean, and maximum of the tree depth and num-
ber of leaves.

* confusion: Confusion matrix of the prediction.
valid: Object of class "H20ParsedData”, which is the data used for validating the model.

xval: List of objects of class "H20DRFModel", representing the n-fold cross-validation models.

Extends

Class "H20Model", directly.

Methods

show signature(object = "H20DRFModel”): ...

See Also

h20.randomForest

Examples

showClass("H20DRFModel")

96 H20GBMGrid-class

H20GapStatModel-class Class "H20GapStatModel”

Description

A class for representing gap statistic models.

Objects from the Class

Objects can be created by calls of the form new("H20GapStatModel”, ...).

Slots

key: Object of class "character”, representing the unique hex key that identifies the model.
data: Object of class H20ParsedData, which is the input data used to build the model.

model: Object of class "list”

Extends

Class "H20Model", directly.

Methods

show signature(object = "H20GapStatModel”): ...

See Also

h2o.naiveBayes

Examples

showClass("H20GapStatModel™)

H20GBMGrid-class Class "H20GBMGrid"

Description

Object representing the models built by a H20 GBM grid search.

Objects from the Class

Objects can be created by calls of the form new(”H20GBMGrid", ...).

H20GBMModel-class 97

Slots
key: Object of class "character”, representing the unique hex key that identifies the model.
data: Object of class "H20ParsedData", which is the input data used to build the model.

model: Object of class "list” containing "H20GBMModel" objects representing the models re-
turned by the GBM grid search.

sumtable: Object of class "list"” containing summary statistics of all the models returned by the
GBM grid search.

Extends
Class "H20Grid", directly.

Methods
No methods defined with class "H20GBMGrid" in the signature.

See Also
H20GBMModel, h2o.gbm

Examples

showClass("H20GBMGrid")

H20GBMModel-class Class "H20GBMModel"

Description

A class for representing generalized boosted classification/regression models.

Objects from the Class
Objects can be created by calls of the form new("H20GBMModel”, ...).

Slots
key: Object of class "character”, representing the unique hex key that identifies the model.
data: Object of class H20ParsedData, which is the input data used to build the model.
model: Object of class "1ist"” containing the following elements:

¢ err: The mean-squared error in each tree.
e cm: (Only for classification). The confusion matrix of the response, with actual observa-
tions as rows and predicted values as columns.

valid: Object of class H20ParsedData, which is the dataset used to validate the model.

xval: List of objects of class "H20GBMModel", representing the n-fold cross-validation models.

Extends
Class "H20Model", directly.

98 H20GLMGrid-class

Methods

show signature(object = "H20GBMModel"): ...

See Also

h20. gbm

Examples

showClass("H20GBMModel")

H20GLMGrid-class Class "H20GLMGrid"

Description

Object representing the models built by a H20 GLM grid search.

Objects from the Class

Objects can be created by calls of the form new("”H20GLMGrid", ...).

Slots

key: Object of class "character”, representing the unique hex key that identifies the model.
data: Object of class "H20ParsedData"”, which is the input data used to build the model.

model: Object of class "list"” containing "H20GLMModel” objects representing the models re-
turned by the GLM grid search.

sumtable: Object of class "1ist"” containing summary statistics of all the models returned by the
GLM grid search.

Extends

Class "H20Grid", directly.

Methods
No methods defined with class "H20OGLMGrid" in the signature.

See Also

H20GLMModel, h2o.glm

Examples

showClass("H20GLMGrid")

H20GLMModel-class

H20GLMModel-class Class "H20GLMModel"

Description

A class for representing generalized linear models.

Objects from the Class

Objects can be created by calls of the form new("”"H20GLMModel”, ...).

Slots

key: Object of class "character”, representing the unique hex key that identifies the model.
data: Object of class H20ParsedData, which is the input data used to build the model.
model: Object of class "1ist"” containing the following elements:

e coefficients: A named vector of the coefficients estimated in the model.
¢ rank: The numeric rank of the fitted linear model.

e family: The family of the error distribution.

¢ deviance: The deviance of the fitted model.

e aic: Akaike’s Information Criterion for the final computed model.

* null.deviance: The deviance for the null model.

e iter: Number of algorithm iterations to compute the model.

e df.residual: The residual degrees of freedom.

e df.null: The residual degrees of freedom for the null model.

¢ y: The response variable in the model.

* x: A vector of the predictor variable(s) in the model.

xval: List of objects of class "H20GLMModel", representing the n-fold cross-validation models.

Extends

Class "H20Model", directly.

Methods

show signature(object = "H20GLMModel"): ...

See Also

h2o0.glm

Examples

showClass("H20GLMModel")

100 H20Grid-class

H20GLMModelList-class Class "H20GLMModellList"

Description

Object representing the models built by a H20 GLM search over lambda values.

Objects from the Class

Objects can be created by calls of the form new("H20GLMModelList"”, ...).

Slots

models: Object of class "1ist” containing "H20GLMModel” objects representing the models re-
turned from the lambda search.

best_model: Object of class "numeric” indicating the index of the model with the optimal lambda
value in the above list.

lambdas: Object of class "numeric” indicating the optimal lambda value from the lambda search.
Methods

show signature(object = "H20GLMModelList"): ...

summary signature(object = "H20GLMModellList"): ...
See Also

H20GLMModel, h2o.glm

Examples

showClass("H20GLMModelList")

H20Grid-class Class "H20Grid"

Description

Object representing the models built by a H20 grid search algorithm.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots

key: Object of class "character”, representing the unique hex key that identifies the model.
data: Object of class "H20ParsedData", which is the input data used to build the model.

model: Object of class "list"” containing "H20Model" objects representing the models returned
by the grid search algorithm.

sumtable: Object of class "1ist” containing summary statistics of all the models returned by the
grid search algorithm.

H20OKMeansGrid-class 101

Methods

show signature(object = "H20Grid"): ...

See Also

H20GLMGrid, H20KMeansGrid, H20DRFGrid, H20GBMGrid, H20DeepLearningGrid

Examples

showClass("H20Grid")

H20KMeansGrid-class Class "H20KMeansGrid”

Description

Object representing the models built by a H20 K-Means grid search.

Objects from the Class

Objects can be created by calls of the form new("H20KMeansGrid”, ...).

Slots

key: Object of class "character”, representing the unique hex key that identifies the model.
data: Object of class "H20ParsedData"”, which is the input data used to build the model.

model: Object of class "1ist"” containing "H20KMeansModel” objects representing the models re-
turned by the K-Means grid search.

sumtable: Object of class "1ist"” containing summary statistics of all the models returned by the
K-Means grid search.

Extends

Class "H20Grid", directly.

Methods
No methods defined with class "H20KMeansGrid" in the signature.

See Also

H20KMeansModel, h2o.kmeans

Examples

showClass(""H20KMeansGrid")

102 H20OModel-class

H20KMeansModel-class Class "H20KMeansModel”

Description

A class for representing k-means models.

Objects from the Class

Objects can be created by calls of the form new("H20KMeansModel”, ...).

Slots
key: Object of class "character”, representing the unique hex key that identifies the model.
data: Object of class H20ParsedData, which is the input data used to build the model.
model: Object of class "1ist"” containing the following elements:

e centers: A matrix of cluster centers.

e cluster: A H20ParsedData object containing the vector of integers (from 1:k), which
indicate the cluster to which each point is allocated.

* size: The number of points in each cluster.
* withinss: Vector of within-cluster sum of squares, with one component per cluster.
* tot.withinss: Total within-cluster sum of squares, i.e., sum(withinss).

Methods

show signature(object = "H20KMeansModel"): ...

See Also

h2o.kmeans

Examples

showClass ("”"H20KMeansModel")

H20Model-class Class "H20Model"”

Description

Object representing the model built by an H20 algorithm.

Objects from the Class

A virtual Class: No objects may be created from it.

H2ONBModel-class 103

Slots

key: Object of class "character”, representing the unique hex key that identifies the model.
data: Object of class "H20ParsedData"”, which is the input data used to build the model.

model: Object of class "1ist"” containing the characteristics of the model returned by the algo-
rithm.

Methods

No methods defined with class "H20OModel" in the signature.

See Also
H20GLMModel, H20KMeansModel, H20DRFModel, H20GBMModel, H20PCAModel, H20DeeplLearningModel

Examples

showClass(""H20Model")

H20NBModel-class Class "H20NBModel"

Description

A class for representing naive Bayes models.

Objects from the Class

Objects can be created by calls of the form new("H20NBModel”, ...).

Slots

key: Object of class "character”, representing the unique hex key that identifies the model.
data: Object of class H20ParsedData, which is the input data used to build the model.
model: Object of class "1ist"” containing the following elements:

» laplace: A positive number controlling Laplace smoothing. The default (0) disables

Laplace smoothing.

* levels: Categorical levels of the dependent variable.

e apriori: Total occurrences of each level of the dependent variable.

e apriori_prob: A-priori class distribution for the dependent variable.

* tables: A list of tables, one for each predictor variable. For categorical predictors,
the table displays, for each attribute level, the conditional probabilities given the target
class. For numeric predictors, the table gives, for each target class, the mean and standard
deviation of the variable.

Extends

Class "H20Model", directly.

104 H2OParsedData-class

Methods

show signature(object = "H20NBModel"): ...

See Also

h2o.naiveBayes

Examples

showClass ("H20NBModel")

H20ParsedData-class Class "H20ParsedData”

Description

A class for representing imported data sets that have been parsed.

Objects from the Class

Objects can be created by calls of the form new("H20ParsedData"”, ...).

Slots

h2o: Object of class "H20Client", which is the client object that was passed into the function call.
key: Object of class "character”, which is the hex key assigned to the imported data.

logic: Object of class "logical”, indicating whether the "H20ParsedData" object represents
logical data

any_enum: Object of class "logical”, indicating whether the frame has any factor columns.
ncols: Object of class "numeric”, holds the number of columns of the "H20ParsedData” object.
nrows: Object of class "numeric”, holds the number of rows of the "H20ParsedData"” object.

col_names: Object of class "vector”, holds the column names of the "H20ParsedData” object.

Methods
- signature(el = "H20ParsedData"”, e2 = "H20ParsedData"): ...
- signature(el = "H20ParsedData"”, e2 = "numeric"): ...
- signature(el = "numeric”, e2 = "H20ParsedData"): ...

! signature(x = "H20ParsedData"): ...
"H20ParsedData", e2 = "H20ParsedData"): ...

!= signature(el

!= signature(el = "H20ParsedData”, e2 = "numeric"): ...
!= signature(el = "numeric”, e2 = "H20ParsedData"): ...
!= signature(el = "H20ParsedData”, e2 = "character”): ...
!= signature(el = "character”, e2 = "H20ParsedData"): ...

[signature(x = "H20ParsedData"): ...

[<- signature(x = "H20ParsedData"): ...

H2OParsedData-class 105

[[signature(x = "H20ParsedData"): ...

[[<- signature(x = "H20ParsedData"): ...

* signature(el = "H20ParsedData”, e2 = "H20ParsedData"): ...
* signature(el = "H20ParsedData”, e2 = "numeric"): ...

* signature(el = "numeric”, e2 = "H20ParsedData"): ...

/ signature(el = "H20ParsedData"”, e2 = "H20ParsedData"): ...
/ signature(el = "H20ParsedData"”, e2 = "numeric"): ...

/ signature(el = "numeric”, e2 = "H20ParsedData"): ...
"H20ParsedData"”, e2 = "H20ParsedData”): ...
"H20ParsedData”, e2 = "logical”): ...

& signature(el

& signature(el

"H20ParsedData”, e2 = "numeric"): ...
"logical”, e2 = "H20ParsedData"): ...

& signature(el

& signature(el

& signature(el "numeric”, e2 = "H20ParsedData"): ..
% % signature(el = "H20ParsedData”, e2 = "H20ParsedData"): ...

% % signature(el = "H20ParsedData”, e2 = "numeric"): ...

% % signature(el = "numeric”, e2 = "H20ParsedData"): ...

+ signature(el = "H20ParsedData”, e2 = "H20ParsedData"): ...

+ signature(el = "H20ParsedData"”, e2 = "numeric"): ...
+ signature(el = "numeric”, e2 = "H20ParsedData"): ...
< signature(el = "H20ParsedData"”, e2 = "H20ParsedData"): ...
< signature(el = "H20ParsedData"”, e2 = "numeric"): ...
< signature(el = "numeric”, e2 = "H20ParsedData"): ...

<= signature(el = "H20ParsedData”, e2 = "H20ParsedData"): ...
<= signature(el = "H20ParsedData”, e2 = "numeric”): ...
<= signature(el = "numeric”, e2 = "H20ParsedData"): ...
== signature(el = "H20ParsedData”, e2 = "H20ParsedData"): ...

== signature(el = "H20ParsedData"”, e2 = "numeric"): ...

== signature(el = "numeric”, e2 = "H20ParsedData"): ...
> signature(el = "H20ParsedData"”, e2 = "H20ParsedData"): ...

> signature(el = "H20ParsedData”, e2 = "numeric"): ...

> signature(el = "numeric”, e2 = "H20ParsedData"): ...

>= signature(el = "H20ParsedData”, e2 = "H20ParsedData"): ...
>= signature(el = "H20ParsedData”, e2 = "numeric”): ...

>= signature(el "numeric"”, e2 = "H20ParsedData"): ...

| signature(el = "H20ParsedData", e2 = "H20ParsedData"): ...
A signature(el = "numeric”, e2 = "H20ParsedData"): ...

A signature(el = "H20ParsedData”, €2 = "numeric"): ...

| signature(el = "H20ParsedData", e2 = "logical”): ...

| signature(el = "H20ParsedData", €2 = "numeric”): ...

| signature(el = "logical”, e2 = "H20ParsedData"): ...

106 H2OParsedData-class

| signature(el = "numeric"”, e2 = "H20ParsedData"): ...
$ signature(x = "H20ParsedData"): ...

$<- signature(x = "H20ParsedData”): ...

abs signature(x = "H20ParsedData"): ...

apply signature(X = "H20ParsedData"”): ...
as.data.frame signature(x = "H20ParsedData"): ...

as.Date signature(x = "H20ParsedData”, format = "character"): ...
as.factor signature(x = "H20ParsedData"): ...

ceiling signature(x = "H20ParsedData"): ...

colMeans signature(x = "H20ParsedData"): ...

colnames signature(x = "H20ParsedData"): ...

colnames<- signature(x = "H20ParsedData”, value = "character"): ...
colnames<- signature(x = "H20ParsedData”, value = "H20ParsedData"): ...

dim signature(x = "H20ParsedData"): ...

dim<- signature(x = "H20ParsedData"): ...

exp signature(x = "H20ParsedData"): ...

findInterval signature(x = "H20ParsedData"): ...

floor signature(x = "H20ParsedData"): ...

h2o.cut signature(x = "H20ParsedData"”, breaks = "numeric"”): ...
h20<- signature(x = "H20ParsedData”, value = "H20ParsedData"): ...
h20<- signature(x = "H20ParsedData", value = "numeric”): ...
head signature(x = "H20ParsedData"): ...

histograms signature(object = "H20ParsedData"): ...

ifelse signature(test = "H20ParsedData"): ...

is.factor signature(x = "H20ParsedData"): ...

is.na signature(x = "H20ParsedData”): ...
length signature(x = "H20ParsedData”): ...
levels signature(x = "H20ParsedData”): ...
log signature(x = "H20ParsedData"): ...
names signature(x = "H20ParsedData"): ...
names<- signature(x = "H20ParsedData"): ...
ncol signature(x = "H20ParsedData”): ...
nrow signature(x = "H20ParsedData"): ...

quantile signature(x = "H20ParsedData"): ...
range signature(x = "H20ParsedData"): ...

sd signature(x = "H20ParsedData"): ...

show signature(object = "H20ParsedData"): ...
sign signature(x = "H20ParsedData"): ...

sqrt signature(x = "H20ParsedData”): ...
summary signature(object = "H20ParsedData”): ...
t signature(object = "H20ParsedData"): ...
tail signature(x = "H20ParsedData"): ...

trunc signature(x = "H20ParsedData"): ...

var signature(x = "H20ParsedData"): ...

H20OPCAModel-class 107

See Also

H20RawData, h2o.parseRaw

Examples

showClass("H20ParsedData")

H20PCAModel-class Class "H20PCAModel”

Description

A class for representing principal components analysis results.

Objects from the Class
Objects can be created by calls of the form new(”"H20PCAModel”, ...).

Slots
key: Object of class "character”, representing the unique hex key that identifies the model.
data: Object of class H20ParsedData, which is the input data used to build the model.
model: Object of class "1ist"” containing the following elements:

e standardized: A logical value indicating whether the data was centered and scaled.

» sdev: The standard deviations of the principal components (i.e., the square roots of the
eigenvalues of the covariance/correlation matrix).

* rotation: The matrix of variable loadings (i.e., a matrix whose columns contain the
eigenvectors).

Extends
Class "H20Model", directly.

Methods

show signature(object = "H20PCAModel”): ...
plot signature(x = "H20PCAModel”, y, ...):..
summary signature(object = "H20PCAModel"): ...

See Also

h2o.prcomp

Examples

showClass("H20PCAModel")

108 H2OPerfModel-class

H20PerfModel-class Class "H20PerfModel”

Description

A class for constructing performance measures of H20 models.

Objects from the Class

Objects can be created by calls of the form new("H20PerfModel”, ...).

Slots

cutoffs: A numeric vector of threshold values.

measure: A numeric vector of performance values corresponding to the threshold values. The
specific performance measure is given in perf.

perf: A character string indicating the performance measure used to evaluate the model. One of
either "F1", "accuracy"”, "precision", "recall", "specificity", or "max_per_class_error". See
h2o.performance for a detailed description of each.

model: Object of class "1ist"” containing the following elements:

* auc: Area under the curve.

e gini: Gini coefficient.

* best_cutoff: Threshold value that optimizes the performance measure perf. If perf is
"max_per_class_error", it is minimized at this threshold, otherwise, it is maximized.

* F1: F1 score at best cutoff.

* accuracy: Accuracy value at best cutoff. Estimated as (TP + TN)/(P + N).

* precision: Precision value at best cutoff. Estimated as TP/(T P + FP).

* recall: Recall value at best cutoff, i.e. the true positive rate TP/ P.

 specificity: Specificity value at best cutoff, i.e. the true negative rate T N/N.

* max_per_class_err: Maximum per class error at best cutoff.

» confusion: Confusion matrix at best cutoff.

roc: A data frame with two columns: TPR = true positive rate and FPR = false positive rate,
calculated at the listed cutoffs.

gains: A gains table and lift chart.

Methods

show signature(object = "H20PerfModel”): ...
plot signature(x = "H20PerfModel”, type, ...): ...

See Also

h2o.performance, plot.H20PerfModel

Examples

showClass("H20PerfModel")

H20ORawData-class 109

H20RawData-class Class "H20RawData"

Description

A class for representing imported data sets that have not been parsed.

Objects from the Class

Objects can be created by calls of the form new("H20RawData"”, ...).

Slots

h2o: Object of class "H20Client", which is the client object that was passed into the function call.

key: Object of class "character”, which is the hex key assigned to the imported data.

Methods

h2o.parseRaw signature(data = "H20ParsedData”, key = "character”, header = "logical”, header_with.

show signature(object = "H20RawData"): ...

See Also
H20ParsedData

Examples

showClass("H20RawData")

H20SpeeDRFGrid-class Class "H20DRFGrid”

Description

Object representing the models built by a H20 single-node random forest grid search.

Objects from the Class

Objects can be created by calls of the form new("H20SpeeDRFGrid”, ...).

Slots

key: Object of class "character”, representing the unique hex key that identifies the model.
data: Object of class "H20ParsedData"”, which is the input data used to build the model.

model: Object of class "list"” containing "H20SpeeDRFModel” objects representing the models
returned by the distributed random forest grid search.

sumtable: Object of class "1ist” containing summary statistics of all the models returned by the
distributed random forest grid search.

110 H20SpeeDRFModel-class

Extends
Class "H20Grid", directly.

Methods
No methods defined with class "H20SpeeDRFGrid" in the signature.

See Also
H20SpeeDRFModel, h2o.SpeeDRF

Examples

showClass("H20SpeeDRFGrid")

H20SpeeDRFModel-class Class "H20SpeeDRFModel”

Description

A class for representing single-node random forest ensembles.

Objects from the Class
Objects can be created by calls of the form new("”"H20SpeeDRFModel”, ...).

Slots

key: Object of class "character”, representing the unique hex key that identifies the model.
data: Object of class "H20ParsedData"”, which is the input data used to build the model.
model: Object of class "1ist"” containing the following elements:

* ntree: Number of trees grown.

* mse: Mean squared error for each tree.

* confusion: Confusion matrix of the prediction.
valid: Object of class "H20ParsedData”, which is the data used for validating the model.

xval: List of objects of class "H20SpeeDRFModel”, representing the n-fold cross-validation mod-
els.

Extends
Class "H20Model", directly.

Methods
show signature(object = "H20SpeeDRFModel”): ...

See Also
h20.SpeeDRF

Examples

showClass(""H20SpeeDRFModel")

head 111

head Return the First or Last Part of a H20 Dataset

Description

Returns the first or last rows of an H20 parsed data object.

Usage
S3 method for class 'H20ParsedData’
head(x, n = 6L, ...)
S3 method for class 'H20ParsedData’
tail(x, n = 6L, ...)
Arguments
X An H20 parsed data object.
n (Optional) A single integer. If positive, number of rows in x to return. If nega-

tive, all but the n first/last number of rows in x.

Arguments to be passed to or from other methods. (Currently unimplemented).

Value

A data frame containing the first or last n rows of an H20ParsedData object.

Examples

library(h20o)

localH20 = h2o0.init()

ausPath = system.file("extdata”, "australia.csv", package="h20")
australia.hex = h2o.importFile(localH20, path = ausPath)
head(australia.hex, 10)

tail(australia.hex, 10)

hist.H20ParsedData Obtain and display a histogram for H20 parsed data.

Description

hist.H20ParsedData, a method for the hist generic. Obtain and returns a histogram for an
H20ParsedData object.

Usage

S3 method for class 'H20ParsedData’
hist(x, freq = TRUE, ...)

112 ifelse

Arguments
X An H20ParsedData object with a single numeric column.
freq logical; if TRUE, the histogram graphic is a representation of frequencies, the
counts component of the result; if FALSE the probability density is plotted.
Additional arguments affecting the summary produced. (Currently unimple-
mented).
Details

Counts of numeric values are plotted in cells which is defined in the histogram object as breaks.
The height of a rectangle is proportional to the number of points falling into the cell.

Value

An object of class "histogram" which is a list with components:

breaks the n+1 cell boundaries.

counts n integers; count of values for each nth cell.

density the relative frequencies counts/(rows*bin_size) for each cell.

mids the n cell midpoints.

Xxname a character string with the column name of the vector.

equidist logical, indicating if the distances between breaks are all the same
Examples

Request hists for an H20 parsed data set:

library(h20)

localH20 = h2o0.init()

prosPath = system.file("extdata”, "prostate.csv”, package="h20")
prostate.hex = h2o.importFile(localH20, path = prosPath)

Request a histogram for a subset of columns in an H20 parsed data set
hist(prostate.hex[,3])

ifelse Applies conditional statements to an H20ParsedData object.

Description
Applies conditional statements to numeric vectors in H20 parsed data objects when the data are
numeric.

Usage

ifelse(test, yes, no)

Arguments
test A logical description of the condition to be met (>, <, =, etc...)
yes The value to return if the condition is TRUE.

no The value to return if the condition is FALSE.

is.factor 113

Details

Only numeric values can be tested, and only numeric results can be returned for either condition.
Categorical data is not currently supported for this funciton and returned values cannot be categori-
cal in nature.

Value

Retruns a vector of new values matching the conditions stated in the ifelse call.

Examples
library(h20o)
localH20 = h2o0.init()
ausPath = system.file("extdata”, "australia.csv", package="h20")

australia.hex = h2o.importFile(localH20, path = ausPath)
australia.hex[,9] <- ifelse(australia.hex[,3] < 279.9, 1, @)
summary (australia.hex)

is.factor Tells user if given column is categorical data or not.

Description

Tells user if given column is categorical data or not.

Usage

is.factor(x)

Arguments

X Columns of an H20 parsed data object.

Value

A logical value TRUE if column contains categorical data, FALSE otherwise.

Examples

library(h2o)

localH20 = h2o.init()

prosPath = system.file("extdata”, "prostate.csv”, package="h20")
prostate.hex = h2o.importFile(localH20, path = prosPath)
prostate.hex[,4]=as.factor(prostate.hex[,4])
is.factor(prostate.hex[,4])

is.factor(prostate.hex[,3])

114 mean.H20OParsedData

levels Levels of Categorical Data

Description

Returns a list of the unique values found in a column of categorical data.

Usage
levels(x)

Arguments

X Column of categorical data in an H20ParsedData object.

Value

Returns a list containing one entry for each unique value found in the column of categorical data.

Examples
library(h2o)
localH20 = h2o.init()
irisPath = system.file("extdata”, "iris.csv"”, package="h20")

iris.hex = h2o.importFile(localH20, path = irisPath, key = "iris.hex")
levels(iris.hex[,5])

mean.H20ParsedData Arithmetic Mean of H20 Dataset

Description

mean.H20ParsedData, a method for the mean generic. Calculate the mean of each numeric column
in a H20 dataset.

Usage
S3 method for class 'H20ParsedData’
mean(x, trim = @, na.rm = FALSE, ...)
Arguments
X An H20ParsedData object.
trim (The fraction (0 to 0.5) of observations to trim from each end of x before the

mean is computed. (Currently unimplemented).

na.rm Logical value indicating whether NA or missing values should be stripped before
the computation.

Potential further arguments. (Currently unimplemented).

nrow 115

Value

An H20ParsedData object of scalar numeric value representing the arithmetic mean of each nu-
meric column of x. If x is not logical or numeric, then NA_real_ is returned, with a warning.

Examples

library(h20o)

localH20 = h2o.init()

prosPath = system.file("extdata”, "prostate.csv”, package="h20")
prostate.hex = h2o.importFile(localH20, path = prosPath)
mean(prostate.hex$AGE)

nrow The Number of Rows/Columns of a H20 Dataset

Description

Returns a count of the number of rows in an H20ParsedData object.

Usage
nrow(x)
ncol (x)

Arguments

X An H20ParsedData object.

Value

An integer of length 1 indicating the number of rows or columns in the dataset.

See Also

dim which returns all dimensions

Examples
library(h20)
localH20 = h2o.init()
irisPath = system.file("extdata”, "iris.csv"”, package="h20")

iris.hex = h2o.importFile(localH20, path = irisPath, key = "iris.hex")
nrow(iris.hex)
ncol(iris.hex)

116 plot. H2OPerfModel

plot.H20GapStatModel Elbow Plots and Gap Measures

Description

Draw the number of clusters against the within cluster sum of squares, the expected within cluster
sum of squares, and the gap statistics.

Usage
S3 method for class 'H20GapStatModel'
plot(x, ...)
Arguments
X An H20GapStatModel object.
Arguments to be passed to methods, such as graphical parameters (see par for
details).
See Also
H20GapStatModel
Examples
library(h2o)

localH20 <- h2o0.init()

iris.hex <- as.h2o0(localH20, iris)

gs <- h2o.gapStatistic(iris.hex, K = 5, B = 10)
plot(gs)

plot.H20PerfModel Scatterplot of H20 Performance Measures

Description

Draw scatter plot of a particular performance measure vs. thresholds for a H20 model, or the ROC

curve.
Usage

S3 method for class 'H20PerfModel'

plot(x, type = "cutoffs”, ...)
Arguments

X An H20PerfModel object.

type Either "cutoffs” to plot the performance measure x@perf versus thresholds

x@cutoffs, or "roc"” to plot the corresponding ROC curve (true positive rate
vs. false positive rate).

Arguments to be passed to methods, such as graphical parameters (see par for
details).

quantile. H2OParsedData 117

See Also
H20PerfModel, h2o.performance

Examples

library(h2o)
localH20 = h2o.init()

Run GBM classification on prostate.csv

prosPath = system.file("extdata"”, "prostate.csv”, package = "h20")
prostate.hex = h2o.importFile(localH20, path = prosPath, key = "prostate.hex")
prostate.gbm = h2o.gbm(y = 2, x = 3:9, data = prostate.hex)

Calculate performance measures at threshold that maximizes precision
prostate.pred = h2o.predict(prostate.gbm)
prostate.perf = h2o.performance(prostate.pred[,3], prostate.hex$CAPSULE, measure = "precision”)

plot(prostate.perf, type "cutoffs") # Plot precision vs. thresholds
plot(prostate.perf, type = "roc") # Plot ROC curve

quantile.H20ParsedData
Obtain and display quantiles for H20 parsed data.

Description

quantile.H20ParsedData, a method for the quantile generic. Obtain and return quantiles for an
H20ParsedData object.

Usage

S3 method for class 'H20ParsedData’

quantile(x, probs = seq(@, 1, ©0.25), na.rm = FALSE, names = TRUE, type =7, ...)
Arguments

X An H20ParsedData object with a single numeric column.

probs numeric vector of probabilities with values in [0,1].

na.rm logical; if true, any NA and NaN'’s are removed from x before the quantiles are

computed.
names logical; if true, the result has a names attribute.
type integer selecting the quantile algorithm to use. Currently, only type 7 (linear

interpolation) is supported.

further arguments passed to or from other methods.

Details

Note that H20 parsed data objects can be quite large, and are therefore often distributed across
multiple nodes in an H2O cluster. As a result, percentiles at the 1st, 5th, 10th, 25th, 33, 50, 66, 75,
90, 95, 99th, and other values cannot be returned. This range includes the 1st quantile at the 25th
percentile, median at the 50th percentile, and 3rd quantile at the 75th percentile.

118 rbind. H2OParsedData

Value

A vector describing the percentiles at the given cutoffs for the H20ParsedData object.

Examples

Request quantiles for an H20 parsed data set:

library(h2o)

localH20 = h2o0.init()

prosPath = system.file("extdata”, "prostate.csv”, package="h20")
prostate.hex = h2o.importFile(localH20, path = prosPath)

Request quantiles for a subset of columns in an H20 parsed data set
quantile(prostate.hex[,3])
for(i in 1:ncol(prostate.hex))

quantile(prostate.hex[,i])

rbind.H20ParsedData Combine H20 Datasets by Rows

Description

rbind.H20ParsedData, a method for the rbind generic. Takes a sequence of H20 datasets and
combines them by row.

Usage
S3 method for class 'H20ParsedData’
rbind(..., deparse.level = 1)
Arguments

A sequence of H20ParsedData arguments. All datasets must exist on the same
H20 instance (IP and port) and contain the same number of rows.

deparse.level Integer controlling the construction of row names. Currently unimplemented.

Value

An H20ParsedData object containing the combined . .. arguments row-wise.

Examples

library(h2o)

localH20 = h2o0.init()

prosPath = system.file("extdata”, "prostate.csv”, package="h20")
prostate.hex = h2o.importFile(localH20, path = prosPath)
prostate.rbind = rbind(prostate.hex, prostate.hex)
head(prostate.rbind)

Revalue 119

Revalue Replace specified values with new values, in a factor or character vec-
tor.

Description

revalue If x is a factor, the named levels of the factor will be replaced with the new values.

Usage

revalue(x, replace = NULL, warn_missing = TRUE)

Arguments
X factor or character vector to modify
replace named character vector, with new values as values, and old values as names. If

NULL, then no replacement is performed.

warn_missing print a message if any of the old values are not actually present in X

Details

This function works only on character vectors and factors, but the related mapvalues function works
on vectors of any type and factors, and instead of a named vector specifying the original and re-
placement values, it takes two separate vectors

Examples

library(h2o)
localH20 = h2o0.init()
iris.hex <- as.h2o0(localH20, iris)

display current factor levels
levels(iris.hex$Species)

revalue(iris.hex$Species, c(setosa = "A", versicolor = "B", virginica = "C"))

display new levels
levels(iris.hex$Species)

Revalue.H20ParsedData Replace specified values with new values, in a factor or character vec-
tor.

Description

revalue If x is a factor, the named levels of the factor will be replaced with the new values.

120 Round

Usage

S3 method for class 'H20ParsedData'
revalue(x, replace = NULL, warn_missing = TRUE)

Arguments
X factor or character vector to modify
replace named character vector, with new values as values, and old values as names. If

NULL, then no replacement is performed.
warn_missing print a message if any of the old values are not actually present in x

Details

This function works only on character vectors and factors, but the related mapvalues function works
on vectors of any type and factors, and instead of a named vector specifying the original and re-
placement values, it takes two separate vectors

Examples

library(h2o)
localH20 = h2o0.init()
iris.hex <- as.h2o(localH20, iris)

display current factor levels
levels(iris.hex$Species)

revalue(iris.hex$Species, c(setosa = "A", versicolor = "B", virginica = "C"))

display new levels
levels(iris.hex$Species)

Round Rounding of Numbers

Description

round rounds the values in a H20ParsedData object to the specified number of decimal places.

signif rounds the values in a H20ParsedData object to the specified number of significant digits.

Usage

S3 method for class 'H20ParsedData’
round(x, digits = @)
S3 method for class 'H20ParsedData'
signif(x, digits = 6)

Arguments
X An H20ParsedData object with numeric entries.
digits Single number specifying decimal places (round) or significant digits (signif)

to use. Negative values are interpreted as a power of ten, e.g. round(x, digits = -2)
round to the nearest hundred.

screeplot. HZOPCAModel 121

Details

This method uses the IEC 60559 standard for rounding to the even digit, so 0.5 goes to 0 and
-1.5 goes to -2. See the Java documentation of RoundingMode.HALF_EVEN for more details and
examples.

Value

Returns a H20ParsedData object with each entry rounded as specified. An error will occur if any
of these entries is non-numeric.

Examples
library(h20o)
localH20 = h2o0.init()
irisPath = system.file("extdata”, "iris.csv", package="h20")

iris.hex = h2o.importFile(localH20, path = irisPath)
iris.data = iris.hex[,1:3]

iris.rounded = round(iris.data)
head(iris.rounded)

iris.signif = signif(iris.data, 2)
head(iris.signif)

screeplot.H20PCAModel Summarizes the columns of an H20 parsed FluidVecs data set.

Description
screeplot.H20PCAModel, a method for the screeplot generic. Plots the variances against the
number of the principal component generated by h2o. prcomp.

Usage

S3 method for class 'H20PCAModel'’
screeplot(x, npcs = min(10, length(x@model$sdev)), type = "barplot”,

main = paste("h2o.prcomp(”, x@data@key, ")", sep=""), ...)
Arguments
X An H20PCAModel object.
npcs Number of components to be plotted.
type Type of plot, must be either "barplot” or "lines”.
main Title of the plot.

Additional parameters to be passed to the plotting function.

Examples

library(h20o)

localH20 = h2o.init()

ausPath = system.file("extdata”, "australia.csv”, package = "h20")
australia.hex = h2o.importFile(localH20, path = ausPath)
australia.pca = h2o.prcomp(data = australia.hex, standardize = TRUE)
screeplot(australia.pca)

122 str

sd Standard Deviation of a Numeric Column of H20 Data

Description

Calculates the standard deviation of a H20ParsedData column of continuous real valued data.

Usage
sd(x, na.rm = FALSE)

Arguments
X An H20ParsedData object containing numeric data.
na.rm Logical value where FALSE does not remove NA’s in the calculation and TRUE
removes NA’s in the calculation.
Value

Returns a vector of values of the standard deviations for the requested columns.

Examples
library(h2o)
localH20 = h2o0.init()
irisPath = system.file("extdata”, "iris.csv", package="h20")

iris.hex = h2o.importFile(localH20, path = irisPath, key = "iris.hex")
sd(iris.hex[,4])

str Display the Structure of a H20 Dataset

Description

A method for the str generic. Obtain information about H20 parsed data objects and their structure.

Usage
S3 method for class 'H20ParsedData’
str(object, ...)

Arguments
object An H20ParsedData object.

Potential further arguments. (Currently unimplemented).

Value

A table listing summary information including variable names, types (for example, enum or nu-
meric), count of observations and columns.

strsplit 123

Examples

library(h2o)

localH20 = h2o0.init()

prosPath = system.file("extdata”, "prostate.csv”, package="h20")
prostate.hex = h2o.importFile(localH20, path = prosPath)
str(prostate.hex)

strsplit Split the Elements of a Character Vector

Description

strsplit, a method for the strsplit base method.

Usage

strsplit(x, split, fixed, perl, useBytes)

Arguments
X An H20ParsedData object with a single factor column or an R data frame.
split A non-empty string. Can be a regular expression.
fixed Used by the base method. Ignored by H2OParsedData strsplit.
perl Used by the base method. Ignored by H2OParsedData strsplit.
useBytes Used by the base method. Ignored by H2OParsedData strsplit.
Details

Splits the given factor column on the input split. If split is ”, then an error will be thrown. The
default is to split on whitespace.

strsplit.H20ParsedData
Split the Elements of a Character Vector

Description

strsplit.H20ParsedData, a method for the strsplit base method. Obtain and returns an H20ParsedData
object.

Usage

S3 method for class 'H20ParsedData'
strsplit(x, split, fixed, perl, useBytes)

124 sum

Arguments
X An H20ParsedData object with a single factor column.
split A non-empty string. Can be a regular expression.
fixed Used by the base method. Ignored by H2OParsedData strsplit.
perl Used by the base method. Ignored by H2OParsedData strsplit.
useBytes Used by the base method. Ignored by H2OParsedData strsplit.
Details

Splits the given factor column on the input split. If split is ”, then an error will be thrown. The
default is to split on whitespace.

Value

An object of class "H2OParsedData".

Examples

library(h20)

localH20 <- h2o0.init(ip = "localhost”, port = 54321, startH20 = TRUE)

df <- data.frame(
V1 = c("hello world”, "the dog ate”, "my friend Bob Ace”, "meow meow"),
V2 c(92318, 34891.123, 21,99))

hex <- as.h2o0(localH20, df)

strsplit(hex$vl) # split on ' '

sum Sum of Numeric Values

Description

Calculates the sum of all the values present in its arguments. This method extends the sum generic
to deal with H20ParsedData objects.

Usage
sum(..., na.rm = FALSE)
Arguments
Numeric, complex, logical or H20ParsedData arguments.
na.rm Logical value where FALSE does not remove NA’s in the calculation and TRUE
removes NA’s in the calculation.
Value

Returns the sum over all the input arguments. For a H20ParsedData object, the sum is taken over
all entries in the dataset. An error will occur if any of those entries is non-numeric.

summary 125

Examples
library(h20)
localH20 = h20.init()
ausPath = system.file("extdata”, "australia.csv", package="h20")

australia.hex = h2o.importFile(localH20, path = ausPath, key = "australia.hex")
sum(australia.hex)
sum(c(400, 1234, -1250), TRUE, australia.hex[,1:4])

summary Summarizes the columns of a H20 Dataset

Description

A method for the summary generic. Summarizes the columns of an H20O parsed object or subset of
columns and rows using vector notation (e.g. dataset[row, col])

Usage
S3 method for class 'H20ParsedData’
summary (object, ...)

Arguments
object An H20ParsedData object.

Additional arguments affecting the summary produced. (Currently unimple-
mented).

Value

A matrix displaying the minimum, 1st quartile, median, mean, 3rd quartile and maximum for each
numeric column included in the request call,a summary of the levels and member counts for each
factor column. and a the levels and member counts of the elements in factor columns for all of the
columns specified in the summary call.

Examples

library(h2o)

localH20 = h2o0.init()

prosPath = system.file("extdata”, "prostate.csv”, package="h20")
prostate.hex = h2o.importFile(localH20, path = prosPath)

summary (prostate.hex)

summary (prostate.hex$GLEASON)

summary (prostate.hex[,4:6])

126 summary.H2OPCAModel

summary .H20GapStatModel
Summarizes the H20 Gap Statistic Model

Description

summary .H20GapStatModel, a method for the summary generic. Gives the full output of the model
created by h2o.gapStatistic.

Usage
S3 method for class 'H20GapStatModel'
summary (object, ...)
Arguments
object An H20GapStatModel object.
Additional arguments affecting the summary produced. (Currently unimple-
mented).
Value

A data.frame displaying the contents of the Gap Statistic model. Here we can see the Within
Cluster SS, Expected Within Cluster SS, Gap Statistics

Examples

library(h20o)

localH20 <- h20.init()

iris.hex <- as.h2o(localH20, iris)

gs <- h2o.gapStatistic(iris.hex, K =5, B = 10)
summary(gs) # gives all model information computed

summary .H20PCAModel Summarizes the H20 PCA Model

Description

summary .H20PCAModel, a method for the summary generic. Summarizes the importance of each
principal component returned by h2o. prcomp.

Usage
S3 method for class 'H20PCAModel'’
summary (object, ...)

Arguments
object An H20PCAModel object.

Additional arguments affecting the summary produced. (Currently unimple-
mented).

tolower 127

Value

A matrix displaying the standard deviation, proportion of variance explained and cumulative pro-
portion of variance explained by each principal component.

Examples
library(h2o)
localH20 = h2o0.init()
ausPath = system.file("extdata”, "australia.csv", package="h20")

australia.hex = h2o.importFile(localH20, path = ausPath)
australia.pca = h2o.prcomp(data = australia.hex, standardize = TRUE)
summary(australia.pca)

tolower Change the elements of a character vector to lower case

Description

tolower, a method for the tolower base method.

Usage

tolower(x)

Arguments

X An H20ParsedData object with a single factor column or an R data frame.

Details

Changes the case to lower

tolower.H20ParsedData Transform Elements of a Character Vector Into Lower Case

Description

tolower.H20ParsedData, a method for the tolower base method. Obtain and returns an H20ParsedData
object.

Usage

S3 method for class 'H20ParsedData’
tolower(x)

Arguments

X An H20ParsedData object with a single factor column.

128 toupper. H2OParsedData

Details

Converts alphabetic characters from upper to lower case in the English locale. Non-alphabetic
characters are left unchanged.

Value

An object of class "H2OParsedData".

Examples

library(h2o)

localH20 <- h2o0.init(ip = "localhost”, port = 54321, startH20 = TRUE)

df <- data.frame(
V1 = c("HELLO WoR@&*LD", "the dOg ATE", "my friENd BOb Ace"”, "mEow meOW"),
V2 = ¢(92318, 34891.123, 21,99))

hex <- as.h2o0(localH20, df)

tolower (hex$V1)

toupper Change the elements of a character vector to lower case

Description

toupper, a method for the toupper base method.

Usage

toupper (x)

Arguments

X An H20ParsedData object with a single factor column or an R data frame.

Details

Changes the case to upper.

toupper.H20ParsedData Transform Elements of a Character Vector Into Upper Case

Description

toupper.H20ParsedData, a method for the toupper base method. Obtain and returns an H20ParsedData
object.

Usage

S3 method for class 'H20ParsedData’
toupper (x)

trim 129

Arguments

X An H20ParsedData object with a single factor column.

Details

Converts alphabetic characters from lower to upper case in the English locale. Non-alphabetic
characters are left unchanged.

Value

An object of class "H2OParsedData".

Examples

library(h20o)

localH20 <- h2o0.init(ip = "localhost”, port = 54321, startH20 = TRUE)

df <- data.frame(
V1 = c("HellO0 WoR@&*LD", "the dOg ATE", "my friENd BOb Ace"”, "mEow meQOW"),
V2 = ¢(92318, 34891.123, 21,99))

hex <- as.h2o0(localH20, df)

toupper (hex$Vv1)

trim Trim the leading and trailing white space.

Description

h2o.trim, a method for removing leading and trailing white space.

Usage

trim(x)

Arguments

X An H20ParsedData object with a single factor column.

Details

Remove trailing and leading white space.

Examples

library(h2o)
localH20 = h2o.init()
fr <- data.frame(
x = c(" asdfhuash ", " # a ", "hello "y,
c(1,2,3)

)
hex <- as.h2o0(localH20, fr)
trim(hex$x)

130 unique.H2OParsedData

unique.H20ParsedData Extract Unique Elements from H20 Dataset

Description

unique.H20ParsedData, a method for the unique generic. Returns a H20 dataset like x but with
duplicate elements/rows removed.

Usage
S3 method for class 'H20ParsedData’
unique(x, incomparables = FALSE, ...)
h2o.unique(x, incomparables = FALSE, ...)
Arguments
X An H20ParsedData object.

incomparables A vector of values that cannot be compared, or FALSE which indicates all values
can be compared. (Currently unimplemented).

Potential further arguments. (Currently only partially unimplemented).

Details

Only MARGIN = 2 is currently supported, that is, dropping duplicate rows in a H20 dataset. This
method runs on top of ddply in H20.

Value

An H20ParsedData with the same columns, but all duplicate rows removed.

Examples

library(h2o)

localH20 = h20.init()

prosPath = system.file("extdata”, "prostate.csv”, package="h20")
prostate.hex = h2o.importFile(localH20, path = prosPath)
nrow(prostate.hex$AGE)

prosAge.uniq = unique(prostate.hex$AGE)

nrow(prosAge.uniq)

head(prosAge.uniq)

which 131

which Return the row numbers for which the condition is true

Description

which, a method for the which base method.

Usage
which(x, arr.ind = FALSE, useNames = TRUE)

Arguments
X An H20ParsedData object
arr.ind Ignored
useNames Ignored

Details

Similar to R’s which.

Examples

library(h2o)

localH20 = h2o0.init()

hex <- as.h2o0(localH20, iris)
which(hex[,5] == "setosa")

zzz_ShutdownAfterExamples
Shutdown H20 cloud after examples run (for H20 developers only)

Description

zzz_ShutdownAfterExamples, shutdown H2O cloud after examples run. This is only relevant for
H2O developers during the building of the CRAN package.

Examples

-- CRAN examples begin --
library(h2o)

localH20 = h2o0.init()
h2o.shutdown(localH20, prompt = FALSE)
Sys.sleep(2)

-- CRAN examples end --

	h2o-package
	AAA_DownloadAndStartBeforeExamples
	apply
	as.data.frame.H2OParsedData
	as.Date.H2OParsedData
	as.factor
	as.h2o
	as.matrix.H2OParsedData
	as.table.H2OParsedData
	cbind.H2OParsedData
	colnames
	data.frameORnull-class
	diff.H2OParsedData
	doNotCallThisMethod...Unsupported
	Extremes
	h2o.addFunction
	h2o.anomaly
	h2o.anyFactor
	h2o.assign
	h2o.clearLogs
	h2o.clusterInfo
	h2o.clusterStatus
	h2o.confusionMatrix
	h2o.coxph
	h2o.createFrame
	h2o.cut
	h2o.ddply
	h2o.deepfeatures
	h2o.deeplearning
	h2o.downloadAllLogs
	h2o.downloadCSV
	h2o.exec
	h2o.exportFile
	h2o.gains
	h2o.gapStatistic
	h2o.gbm
	h2o.getFrame
	h2o.getGLMLambdaModel
	h2o.getLogPath
	h2o.getModel
	h2o.getTimezone
	h2o.glm
	h2o.gsub
	h2o.hitRatio
	h2o.ignoreColumns
	h2o.importFile
	h2o.importFolder
	h2o.importHDFS
	h2o.importURL
	h2o.impute
	h2o.init
	h2o.insertMissingValues
	h2o.interaction
	h2o.kmeans
	h2o.listTimezones
	h2o.loadAll
	h2o.loadModel
	h2o.logAndEcho
	h2o.ls
	h2o.makeGLMModel
	h2o.month
	h2o.mse
	h2o.naiveBayes
	h2o.nFoldExtractor
	h2o.openLog
	h2o.order
	h2o.parseRaw
	h2o.pcr
	h2o.performance
	h2o.prcomp
	h2o.predict
	h2o.randomForest
	h2o.rebalance
	h2o.removeVecs
	h2o.rm
	h2o.runif
	h2o.sample
	h2o.saveAll
	h2o.saveModel
	h2o.setLogPath
	h2o.setTimezone
	h2o.shutdown
	h2o.SpeeDRF
	h2o.splitFrame
	h2o.startLogging
	h2o.stopLogging
	h2o.sub
	h2o.table
	h2o.uploadFile
	h2o.year
	H2OClient-class
	H2ODeepLearningGrid-class
	H2ODeepLearningModel-class
	H2ODRFGrid-class
	H2ODRFModel-class
	H2OGapStatModel-class
	H2OGBMGrid-class
	H2OGBMModel-class
	H2OGLMGrid-class
	H2OGLMModel-class
	H2OGLMModelList-class
	H2OGrid-class
	H2OKMeansGrid-class
	H2OKMeansModel-class
	H2OModel-class
	H2ONBModel-class
	H2OParsedData-class
	H2OPCAModel-class
	H2OPerfModel-class
	H2ORawData-class
	H2OSpeeDRFGrid-class
	H2OSpeeDRFModel-class
	head
	hist.H2OParsedData
	ifelse
	is.factor
	levels
	mean.H2OParsedData
	nrow
	plot.H2OGapStatModel
	plot.H2OPerfModel
	quantile.H2OParsedData
	rbind.H2OParsedData
	Revalue
	Revalue.H2OParsedData
	Round
	screeplot.H2OPCAModel
	sd
	str
	strsplit
	strsplit.H2OParsedData
	sum
	summary
	summary.H2OGapStatModel
	summary.H2OPCAModel
	tolower
	tolower.H2OParsedData
	toupper
	toupper.H2OParsedData
	trim
	unique.H2OParsedData
	which
	zzz_ShutdownAfterExamples

