Source code for h2o.model.multinomial

from . import H2OFrame
from . import H2OConnection
from model_base import ModelBase

[docs]class H2OMultinomialModel(ModelBase): def _make_model(self): return H2OMultinomialModel()
[docs] def confusion_matrix(self, data): """ Returns a confusion matrix based of H2O's default prediction threshold for a dataset """ if not isinstance(data, H2OFrame): raise ValueError("data argument must be of type H2OFrame, but got {0}" .format(type(data))) j = H2OConnection.post_json("Predictions/models/" + self._id + "/frames/" + data.frame_id) return j["model_metrics"][0]["cm"]["table"]
[docs] def hit_ratio_table(self, train=False, valid=False, xval=False): """ Retrieve the Hit Ratios If all are False (default), then return the training metric value. If more than one options is set to True, then return a dictionary of metrics where the keys are "train", "valid", and "xval" :param train: If train is True, then return the R^2 value for the training data. :param valid: If valid is True, then return the R^2 value for the validation data. :param xval: If xval is True, then return the R^2 value for the cross validation data. :return: The R^2 for this regression model. """ tm = ModelBase._get_metrics(self, train, valid, xval) m = {} for k,v in zip(tm.keys(),tm.values()): m[k] = None if v is None else v.hit_ratio_table() return m.values()[0] if len(m) == 1 else m
[docs] def plot(self, timestep="AUTO", metric="AUTO", **kwargs): """ Plots training set (and validation set if available) scoring history for an H2OMultinomialModel. The timestep and metric arguments are restricted to what is available in its scoring history. :param timestep: A unit of measurement for the x-axis. :param metric: A unit of measurement for the y-axis. :return: A scoring history plot. """ if self._model_json["algo"] in ("deeplearning", "drf", "gbm"): if metric == "AUTO": metric = "classification_error" elif metric not in ("logloss","classification_error","MSE"): raise ValueError("metric for H2OMultinomialModel must be one of: AUTO, logloss, classification_error, MSE") self._plot(timestep=timestep, metric=metric, **kwargs)