balance_classes
¶
- Available in: GBM, DRF, Deep Learning
- Hyperparameter: yes
Description¶
During model training, you might find that the majority of your data belongs in a single class. For example, consider a binary classification model that has 100 rows, with 80 rows labeled as class 1 and the remaining 20 rows labeled as class 2. This is a common scenario, given that machine learning attempts to predict class 1 with the highest accuracy. It can also be an example of an imbalanced dataset, in this case, with a ratio of 4:1.
The balance_classes
option can be used to balance the class distribution. When enabled, H2O will either undersample the majority classes or oversample the minority classes. In addition, if this option is enabled, then you can also specify a value for the class_sampling_factors
and max_after_balance_size
options.
Notes:
- This option is disabled by default.
- This option only applies to classification problems.
- Enabling this option can increase the size of the data frame.
Example¶
library(h2o)
h2o.init()
# import the covtype dataset:
# this dataset is used to classify the correct forest cover type
# original dataset can be found at https://archive.ics.uci.edu/ml/datasets/Covertype
covtype <- h2o.importFile("https://s3.amazonaws.com/h2o-public-test-data/smalldata/covtype/covtype.20k.data")
# convert response column to a factor
covtype[,55] <- as.factor(covtype[,55])
# set the predictor names and the response column name
predictors <- colnames(covtype[1:54])
response <- 'C55'
# split into train and validation sets
covtype.splits <- h2o.splitFrame(data = covtype, ratios = .8, seed = 1234)
train <- covtype.splits[[1]]
valid <- covtype.splits[[2]]
# # try using the balance_classes parameter (set to TRUE):
# cov_gbm <- h2o.gbm(x = predictors, y = response, training_frame = train,
# validation_frame = valid, balance_classes = TRUE, seed = 1234)
# print(h2o.logloss(cov_gbm, valid = TRUE))
# grid over `balance_classes` (boolean parameter)
# select the values for `balance_classes` to grid over
hyper_params <- list( balance_classes = c(TRUE, FALSE) )
# this example uses cartesian grid search because the search space is small
# and we want to see the performance of all models. For a larger search space use
# random grid search instead: {'strategy': "RandomDiscrete"}
# build grid search with previously made GBM and hyperparameters
grid <- h2o.grid(x = predictors, y = response, training_frame = train, validation_frame = valid,
algorithm = "gbm", grid_id = "covtype_grid", hyper_params = hyper_params,
search_criteria = list(strategy = "Cartesian"), seed = 1234)
# Sort the grid models by logloss
sortedGrid <- h2o.getGrid("covtype_grid", sort_by = "logloss", decreasing = FALSE)
sortedGrid
import h2o
from h2o.estimators.gbm import H2OGradientBoostingEstimator
h2o.init()
h2o.cluster().show_status()
# import the covtype dataset:
# this dataset is used to classify the correct forest cover type
# original dataset can be found at https://archive.ics.uci.edu/ml/datasets/Covertype
covtype = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/covtype/covtype.20k.data")
# convert response column to a factor
covtype[54] = covtype[54].asfactor()
# set the predictor names and the response column name
predictors = covtype.columns[0:54]
response = 'C55'
# split into train and validation sets
train, valid = covtype.split_frame(ratios = [.8], seed = 1234)
# # try using the balance_classes parameter (set to True):
# cov_gbm = H2OGradientBoostingEstimator(balance_classes = True, seed = 1234)
# cov_gbm.train(x = predictors, y = response, training_frame = train, validation_frame = valid)
print('logloss', cov_gbm.logloss(valid = True))
# grid over `balance_classes` (boolean parameter)
# import Grid Search
from h2o.grid.grid_search import H2OGridSearch
# select the values for `balance_classes` to grid over
hyper_params = {'balance_classes': [True, False]}
# this example uses cartesian grid search because the search space is small
# and we want to see the performance of all models. For a larger search space use
# random grid search instead: {'strategy': "RandomDiscrete"}
# initialize the GBM estimator
cov_gbm_2 = H2OGradientBoostingEstimator(seed = 1234)
# build grid search with previously made GBM and hyperparameters
grid = H2OGridSearch(model = cov_gbm_2, hyper_params = hyper_params,
search_criteria = {'strategy': "Cartesian"})
# train using the grid
grid.train(x = predictors, y = response, training_frame = train, validation_frame = valid)
# sort the grid models by logloss
sorted_grid = grid.get_grid(sort_by='logloss', decreasing=False)
print(sorted_grid)