
Deep Learning with Deep Water

Wen Phan Magnus Stensmo Mateusz Dymczyk Arno Candel Qiang Kou

Edited by: Angela Bartz

http://h2o.ai/resources/

October 2017: First Edition

http://h2o.ai/resources/

Deep Learning with Deep Water
by Wen Phan, Magnus Stensmo,
Mateusz Dymczyk, Arno Candel, & Qiang Kou
Edited by: Angela Bartz

Published by H2O.ai, Inc.
2307 Leghorn St.
Mountain View, CA 94043

©2017 H2O.ai, Inc. All Rights Reserved.

October 2017: First Edition

Photos by ©H2O.ai, Inc.

All copyrights belong to their respective owners.
While every precaution has been taken in the
preparation of this book, the publisher and
authors assume no responsibility for errors or
omissions, or for damages resulting from the
use of the information contained herein.

Printed in the United States of America.

Contents

1 Introduction 5

2 What is H2O? 5

3 Installation 6
3.1 Build from Source . 7
3.2 Amazon Machine Image . 7
3.3 Docker Image . 7
3.4 Sample Data . 7
3.5 Citation . 7

4 H2O Deep Water Overview 8
4.1 H2O Deep Learning . 8
4.2 Modern Trends in Deep Learning 9
4.3 Why H2O Deep Water? . 9

5 Quick Start: MNIST Classification 10
5.1 Backends . 11
5.2 GPU and CPU . 12
5.3 Using Deep Water with R . 12

6 Image Classification 14
6.1 Data . 14
6.2 Image Specification . 14
6.3 Pre-Defined Networks . 15
6.4 User-Defined Networks . 16

6.4.1 MXNet . 16
6.4.2 TensorFlow . 16

6.5 Pre-Trained Networks . 17
6.5.1 MXNet . 17
6.5.2 TensorFlow . 17

7 H2O Flow (Web UI) 18

8 Grid Search 22
8.1 Cartesian Search . 23
8.2 Random Search . 24

9 Model Checkpoints 25

10 Ensemble 27

4 | CONTENTS

11 Deep Features and Similarity 29

12 Multi-GPU 32

13 Deployment for Inference 32
13.1 Model Object Optimized (MOJO) 32
13.2 Prediction Service Builder . 33

14 Upcoming 34

15 Acknowledgements 34

16 Errata 34

17 References 35

18 Authors 36

What is H2O? | 5

1 Introduction
This booklet introduces the reader to H2O Deep Water, a framework for GPU-
accelerated deep learning on H2O. H2O Deep Water leverages prominent open
source deep learning frameworks, such MXNet, TensorFlow, and Caffe, as
backends. Throughout the booklet, Python examples and code snippets will
be provided for the reader. A quick start is provided to quickly familiarize
the reader with the Deep Water Python API and its key features. A section
on image classification is also provided and demonstrates using pre-defined,
user-defined, and pre-trained networks. As part of the H2O platform, Deep
Water can take advantage of grid search, model checkpointing, and ensembles,
and examples of these are also provided. This booklet also includes a section
describing how Deep Water can be used for unsupervised learning tasks. Finally,
deploying Deep Water models for inference is discussed. To learn more about
the H2O platform, please visit: docs.h2o.ai.

2 What is H2O?
H2O.ai is focused on bringing AI to businesses through software. Its flagship
product is H2O, the leading open source platform that makes it easy for
financial services, insurance companies, and healthcare companies to deploy AI
and deep learning to solve complex problems. More than 9,000 organizations and
80,000+ data scientists depend on H2O for critical applications like predictive
maintenance and operational intelligence. The company – which was recently
named to the CB Insights AI 100 – is used by 169 Fortune 500 enterprises,
including 8 of the world’s 10 largest banks, 7 of the 10 largest insurance
companies, and 4 of the top 10 healthcare companies. Notable customers
include Capital One, Progressive Insurance, Transamerica, Comcast, Nielsen
Catalina Solutions, Macy’s, Walgreens, and Kaiser Permanente.

Using in-memory compression, H2O handles billions of data rows in-memory,
even with a small cluster. To make it easier for non-engineers to create complete
analytic workflows, H2O’s platform includes interfaces for R, Python, Scala,
Java, JSON, and CoffeeScript/JavaScript, as well as a built-in web interface,
Flow. H2O is designed to run in standalone mode, on Hadoop, or within a
Spark Cluster, and typically deploys within minutes.

H2O includes many common machine learning algorithms, such as generalized
linear modeling (linear regression, logistic regression, etc.), Näıve Bayes, principal
components analysis, k-means clustering, and word2vec. H2O implements best-
in-class algorithms at scale, such as distributed random forest, gradient boosting,
and deep learning. H2O also includes a Stacked Ensembles method, which finds

docs.h2o.ai

6 | Installation

the optimal combination of a collection of prediction algorithms using a process
known as ”stacking.” With H2O, customers can build thousands of models and
compare the results to get the best predictions.

H2O is nurturing a grassroots movement of physicists, mathematicians, and
computer scientists to herald the new wave of discovery with data science by
collaborating closely with academic researchers and industrial data scientists.
Stanford university giants Stephen Boyd, Trevor Hastie, and Rob Tibshirani
advise the H2O team on building scalable machine learning algorithms. And
with hundreds of meetups over the past several years, H2O continues to remain
a word-of-mouth phenomenon.

Try it out

� Download H2O directly at http://h2o.ai/download.

� Install H2O’s R package from CRAN at https://cran.r-project.org/
web/packages/h2o/.

� Install the Python package from PyPI at https://pypi.python.org/
pypi/h2o/.

Join the community

� To learn about our training sessions, hackathons, and product updates,
visit http://h2o.ai.

� To learn about our meetups, visit https://www.meetup.com/
topics/h2o/all/.

� Have questions? Post them on Stack Overflow using the h2o tag at
http://stackoverflow.com/questions/tagged/h2o.

� Have a Google account (such as Gmail or Google+)? Join the open source
community forum at https://groups.google.com/d/forum/
h2ostream.

� Join the chat at https://gitter.im/h2oai/h2o-3.

3 Installation
At the time of this writing, Deep Water has not yet been officially released.
So the three options for installing and/or using Deep Water are to build from
source, to try out the H2O Deep Water Amazon Machine Image (AMI), or to
run the H2O Docker Image.

http://h2o.ai/download
https://cran.r-project.org/web/packages/h2o/
https://cran.r-project.org/web/packages/h2o/
https://pypi.python.org/pypi/h2o/
https://pypi.python.org/pypi/h2o/
http://h2o.ai
https://www.meetup.com/topics/h2o/all/
https://www.meetup.com/topics/h2o/all/
http://stackoverflow.com/questions/tagged/h2o
https://groups.google.com/d/forum/h2ostream
https://groups.google.com/d/forum/h2ostream
https://gitter.im/h2oai/h2o-3

Installation | 7

3.1 Build from Source

Build instructions can be found here: https://github.com/h2oai/
deepwater. Different build configurations can target different hardware and
leverage various linear algebra libraries, including MKL, OpenBLAS, ATLAS,
and CUDA.

3.2 Amazon Machine Image

For convenience, H2O.ai releases Deep Water AMIs as a way to try out Deep
Water on GPU-enabled Amazon EC2 instances. We are constantly updating
the AMIs. To get information on the latest AMI and how it use it, please
visit the following: https://github.com/h2oai/deepwater/blob/
master/docs/open-tour-dallas/deep-water-ami.md. For more
information on AWS GPU instances, please visit the following: http://
docs.aws.amazon.com/AWSEC2/latest/UserGuide/accelerated-
computing-instances.html.

3.3 Docker Image

H2O has released a GPU-enabled Docker image on Docker Hub. To use this
image, you must have a Linux machine with at least one GPU. Docker and
nvidia-docker must also be installed. For more information on how to run
the H2O Docker Image, please visit the following: https://github.com/
h2oai/deepwater/blob/master/README.md.

3.4 Sample Data

The examples in this booklet use sample datasets located in a folder named
bigdata. It’s assumed that this folder resides in the folder currently running
H2O. After cloning the h2o-3 repository, run the following command in the
h2o-3 folder to retrieve these datasets:

./gradlew syncBigdataLaptop

Note: For more information about building and running H2O-3, please visit
the following: https://github.com/h2oai/h2o-3#41-building-
from-the-command-line-quick-start

3.5 Citation

To cite this booklet, use the following:

https://github.com/h2oai/deepwater
https://github.com/h2oai/deepwater
https://github.com/h2oai/deepwater/blob/master/docs/open-tour-dallas/deep-water-ami.md
https://github.com/h2oai/deepwater/blob/master/docs/open-tour-dallas/deep-water-ami.md
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/accelerated-computing-instances.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/accelerated-computing-instances.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/accelerated-computing-instances.html
https://github.com/h2oai/deepwater/blob/master/README.md
https://github.com/h2oai/deepwater/blob/master/README.md
https://github.com/h2oai/h2o-3#41-building-from-the-command-line-quick-start
https://github.com/h2oai/h2o-3#41-building-from-the-command-line-quick-start

8 | H2O Deep Water Overview

Phan, W., Stensmo, M., Dymczyk, M., Candel, A. and Kou, Q. (Oct 2017).
Deep Learning with Deep Water . http://h2o.ai/resources.

4 H2O Deep Water Overview

H2O Deep Water is the next generation deep learning addition to the H2O
platform. H2O Deep Water supplements the existing H2O Deep Learning
algorithm, which is a scalable, distributed, and in-memory implementation of
multi-layer perception (MLP) deep learning networks.

4.1 H2O Deep Learning

For several years now, best-in-class deep learning has been part of the H2O
platform, and the H2O deep learning algorithm remains one of the most used
in the world. As with all H2O algorithms, H2O Deep Learning is optimized for
speed and accuracy and is exposed via various adopted APIs and interfaces,
including R, Python, Java, and web UI (H2O Flow). In addition, select features
include:

� Modern training options: specifications for distributions (Bernoulli,
Multinomial, Poisson, Gamma, Tweedie, Laplace, Huber, Quantile, Gaus-
sian), loss functions (cross entropy, quadratic, absolute, Huber), learning
rate, annealing, momentum, mini-batch size, and initialization

� Automatic and flexible data handling to maximize productivity:
standardization, one-hot encoding, observation weights and offsets, class
balancing, sampling factors, ignoring constant columns, sparse data han-
dling, and input layer constraints

� Tuning parameters to prevent model overfitting and efficient model
development: cross-validation, regularization, drop out, early stopping,
model checkpointing, and hyperparameter search

� Deep autoencoders for unsupervised learning: deep features and
anomaly detection

A complete treatment of H2O Deep Learning features can be found in our
documentation at http://docs.h2o.ai/ and in the Deep Learning with H2O
booklet at http://docs.h2o.ai/h2o/latest-stable/h2o-docs/
booklets/DeepLearningBooklet.pdf [1].

http://h2o.ai/resources
http://docs.h2o.ai/
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/booklets/DeepLearningBooklet.pdf
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/booklets/DeepLearningBooklet.pdf

H2O Deep Water Overview | 9

4.2 Modern Trends in Deep Learning

Since the introduction of H2O Deep Learning, deep learning as a practice and
science has changed significantly. Convolutional neural networks and recurrent
neural networks, along with novel building blocks like Inception modules and
residual networks, continue to demonstrate ground breaking results in many
areas of artificial intelligence, including computer vision, speech, audio, and
natural language processing. The depth and complexity of these modern network
architectures ushered new algorithmic innovations and increased computational
resources to train them. Today, the use of graphics processing units (GPU) for
training deep neural networks has become more prominent, and the performance
of GPU hardware continues to increase. A number of GPU-capable deep
learning frameworks have emerged and maintain active development, including
TensorFlow, MXNet, Caffe, Theano, and Torch.

4.3 Why H2O Deep Water?

H2O Deep Water is an extension of H2O Deep Learning and, as such, incor-
porates the modern trends in deep learning. In addition, Deep Water seeks to
continue to make deep learning accessible for practicing data scientists and to
drive value for enterprises. Deep Water offers:

� Deep learning framework integration: Deep Water leverages perfor-
mant and scalable deep learning framework backends.

– TensorFlow, MXNet, and Caffe: These are the initial targets of
supported backends. Caffe support is still under development.

– GPU-accelerated training: All backends allow for GPU-accelerated
training while maintaining the option for CPU-based training.

– Modern deep learning architectures: We offer easy-to-use pre-
defined modern network architectures, such as VGG (see Very Deep
Convolutional Networks for Large-Scale Image Recognition [8]) and
ResNet (see Deep Residual Learning for Image Recognition [3]). At
the same, custom-built or pre-trained networks can also be trained.

� Machine learning platform: Deep Water models can be compared
against other world class H2O algorithms, such as gradient boosting
machines. Deep Water models can also be ensembled along side other
H2O models.

� Ease of use and APIs: Deep Water functionality is exposed via the H2O
Flow Web UI and supported H2O APIs, including R, Python, and Java.

10 | Quick Start: MNIST Classification

� Deployment: All Deep Water models can be deployed similarly to other
H2O models. Specifically, Deep Water models can be exported as an
H2O MOJO format, which can be consumed by any JVM-based lan-
guages. Additional language bindings can be added. For more information
about MOJOs, please go here: http://docs.h2o.ai/h2o/latest-
stable/h2o-genmodel/javadoc/index.html

5 Quick Start: MNIST Classification
The following example provides a quick start to using Deep Water. This
example illustrates the API and shows that many of the capabilities from H2O
Deep Learning are carried over to Deep Water. Using the MNIST handwritten
digits data (see The MNIST Database [6]), this quick start example trains an
MLP network using input drop out, cross-validation, early stopping, and GPU
acceleration (default).

Example in Python

1 import h2o
2 from h2o.estimators.deepwater import

H2ODeepWaterEstimator
3

4 # Start or connect to H2O
5 h2o.init()
6

7 # Import data and transform data
8 train = h2o.import_file("bigdata/laptop/mnist/train.

csv.gz")
9

10 # Specify a subset of features to include in the model
11 features = list(range(0,784))
12 target = 784
13

14 train[target] = train[target].asfactor()
15

16 # Build model
17 model = H2ODeepWaterEstimator(epochs=100, activation="

Rectifier", hidden=[200,200], ignore_const_cols=
False, mini_batch_size=256, input_dropout_ratio
=0.1, hidden_dropout_ratios=[0.5,0.5],
stopping_rounds=3, stopping_tolerance=0.05,

http://docs.h2o.ai/h2o/latest-stable/h2o-genmodel/javadoc/index.html
http://docs.h2o.ai/h2o/latest-stable/h2o-genmodel/javadoc/index.html

Quick Start: MNIST Classification | 11

stopping_metric="misclassification",
score_interval=2, score_duty_cycle=0.5,
score_training_samples=1000,
score_validation_samples=1000, nfolds=5, gpu=True,
seed=1234)

18

19 model.train(x=features, y=target, training_frame=train
)

20

21 # Evaluate model
22 model.show()
23 print(model.scoring_history())

5.1 Backends

By default, Deep Water uses the MXNet backend. We can change that by
using the backend parameter.

Example in Python

1 model = H2ODeepWaterEstimator(epochs=100, activation="
Rectifier", hidden=[200,200], ignore_const_cols=
False, mini_batch_size=256, input_dropout_ratio
=0.1, hidden_dropout_ratios=[0.5,0.5],
stopping_rounds=3, stopping_tolerance=0.05,
stopping_metric="misclassification",
score_interval=2, score_duty_cycle=0.5,
score_training_samples=1000,
score_validation_samples=1000, nfolds=5, gpu=True,
seed=1234, backend="tensorflow")

12 | Quick Start: MNIST Classification

5.2 GPU and CPU

While GPU acceleration is the default, GPU computing is not required. Users
can set gpu=False to fall back to CPU processing.

Example in Python

1 model = H2ODeepWaterEstimator(epochs=100, activation="
Rectifier", hidden=[200,200], ignore_const_cols=
False, mini_batch_size=256, input_dropout_ratio
=0.1, hidden_dropout_ratios=[0.5,0.5],
stopping_rounds=3, stopping_tolerance=0.05,
stopping_metric="misclassification",
score_interval=2, score_duty_cycle=0.5,
score_training_samples=1000,
score_validation_samples=1000, nfolds=5, gpu=False
, seed=1234)

5.3 Using Deep Water with R

The examples for this booklet are done in Python, but an R API is also available
for Deep Water.

Example in R

1 library(h2o)
2

3 # Start or connect to H2O
4 h2o.init()
5

6 # Import data and transform data
7 train <- h2o.importFile("bigdata/laptop/mnist/train.

csv.gz")
8

9 target <- "C785"
10 features <- setdiff(names(train), target)
11

12 train[target] <- as.factor(train[target])
13

14 # Build model

Quick Start: MNIST Classification | 13

15 model <- h2o.deepwater(x=features, y=target, training
_frame=train, epochs=100, activation="Rectifier",
hidden=c(200,200), ignore_const_cols=FALSE, mini_
batch_size=256, input_dropout_ratio=0.1, hidden_
dropout_ratios=c(0.5,0.5), stopping_rounds=3,
stopping_tolerance=0.05, stopping_metric="
misclassification", score_interval=2, score_duty_
cycle=0.5, score_training_samples=1000, score_
validation_samples=1000, nfolds=5, gpu=TRUE, seed
=1234)

16

17 # Evaluate model
18 summary(model)

Note that the rest of the booklet shows code snippets in Python to demonstrate
Deep Water features. Complete examples of Jupyter notebooks can be found
at https://github.com/h2oai/h2o-3/tree/master/examples/
deeplearning/notebooks.

https://github.com/h2oai/h2o-3/tree/master/examples/deeplearning/notebooks
https://github.com/h2oai/h2o-3/tree/master/examples/deeplearning/notebooks

14 | Image Classification

6 Image Classification

6.1 Data

Deep Water is able to consume standard H2O Frames with the following schema:

� Data Set: This is the same frame that any other H2O algorithm can
consume, consisting of numeric and categorical (enum) features.

� Image: This is a two-column frame where one of the columns specifies
the URI of images and the other column contains labels for supervised
training.

The H2O Frame schema interpretation is set by the problem type parameter.
The user can explicitly set the parameter to dataset or image to interpret
the frame in Data Set and Image schemas, respectively. By default, the
problem type parameter is set to auto, which specifies that Deep Water
will auto-detect the schema.

6.2 Image Specification

A few key parameters can be specified for proper mapping of the input frame
as an image:

� image shape: A List[int] specifying the width and height of the
image.

� channels: An int specifying the number of channels.

� mean image file: A string (str) specifying the path of the file
containing the mean image data for data normalization.

Image Classification | 15

Example in Python

1 import h2o
2 from h2o.estimators.deepwater import

H2ODeepWaterEstimator
3

4 # Start or connect to H2O
5 h2o.init()
6

7 # Import data and transform data
8 train = h2o.import_file("bigdata/laptop/deepwater/

imagenet/cat_dog_mouse.csv")
9

10 # Build model
11 model = H2ODeepWaterEstimator(epochs=10, network="

lenet", problem_type="image", image_shape=[28,28],
channels=3)

12

13 model.train(x=[0], y=1, training_frame=train)
14

15 # Evaluate model
16 model.show()

6.3 Pre-Defined Networks

Well known image classification pre-defined networks are built into Deep Water
and can be used out of the box with the network parameter. These include:

� LeNet: Refer to Gradient-Based Learning Applied to Document Recogni-
tion [7]

� AlexNet: Refer to ImageNet Classification with Deep Convolutional Neural
Networks [5]

� VGG: Refer to Very Deep Convolutional Networks for Large-Scale Image
Recognition [8]

� GoogLeNet: Refer to Going Deeper with Convolutions [9]

� Inception-bn: Refer to Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift [4]

� ResNet: Refer to Deep Residual Learning for Image Recognition [3]

16 | Image Classification

This list of network options will continue to grow.

6.4 User-Defined Networks

When the network parameter is set to "user", users can define their own
networks. User-defined or custom networks (graphs) are specified through the
API of the native backend of choice, and it is assumed the user is familiar
with their backend of choice. Networks are then saved and can be specified in
the H2O Deep Water API via the network definition file parameter.
Passing user-defined networks to H2O Deep Water is the same as importing
pre-trained networks without specifying any network parameters (e.g. weights,
biases). See Section 6.5 for code examples.

6.4.1 MXNet

To specify networks with MXNet, use the mxnet.symbol API and Symbol
class. (Refer to http://mxnet.io/api/python/symbol.html.) MXNet
networks are saved as a file via the Symbol.save method.

6.4.2 TensorFlow

To specify networks with TensorFlow, use the tf.Graph class or any high level
API, such as Keras (https://keras.io/). TensorFlow networks are saved
with graph collections, with the tf.train.Saver class (see https://
www.tensorflow.org/programmers guide/variables and https:
//www.tensorflow.org/api docs/python/tf/train/Saver), and
with the tf.train.export meta graph() method.

http://mxnet.io/api/python/symbol.html
https://keras.io/
https://www.tensorflow.org/programmers_guide/variables
https://www.tensorflow.org/programmers_guide/variables
https://www.tensorflow.org/api_docs/python/tf/train/Saver
https://www.tensorflow.org/api_docs/python/tf/train/Saver

Image Classification | 17

6.5 Pre-Trained Networks

Importing pre-trained networks requires specifying the network defintion file
(network/graph information) and network parameters file (e.g. weights,
biases) parameters.

6.5.1 MXNet

As previously mentioned, networks are trained in MXNet with the mxnet.module
API and Module class. Once trained, network parameters can be saved via
the Module.save params method. Along with the network graph file, the
network parameters can be loaded into Deep Water as shown below.

Example in Python

1 model = H2ODeepWaterEstimator(epochs=100, image_shape
=[28,28], backend="mxnet", network="user",
network_definition_file="/path/to/lenet.json",
network_parameters_file="/path/to/lenet-100epochs-
params.txt")

6.5.2 TensorFlow

The tf.train.Saver class also saves the network parameters. It can be
loaded into Deep Water as shown below.

Example in Python

1 model = H2ODeepWaterEstimator(epochs=100, image_shape
=[28,28], backend="tensorflow", network="user",
network_definition_file="/path/to/lenet_28x28x3_3.
meta", network_parameters_file="/path/to/lenet-100
epochs")

18 | H2O Flow (Web UI)

7 H2O Flow (Web UI)
Deep Water can be accessed through the H2O Flow Web UI. Data sets can be
imported and parsed as shown in Figures 1 and 2. Figure 3 shows how you can
view the data after parsing. Note that in the example shown, the data is in the
image schema described in section 6.1.

Figure 1: Import data

H2O Flow (Web UI) | 19

Figure 2: Parse data

Figure 3: View data

20 | H2O Flow (Web UI)

A Deep Water model is built just like any other H2O algorithm as shown in
Figure 4. In this example, we use a simple LeNet pre-defined network. (Refer to
Gradient-Based Learning Applied to Document Recognition [7].) Best practice
defaults are set for all parameters. Figures 5 and 6 highlight the key backend and
GPU selection parameters in the Deep Water Flow configuration, respectively.

Figure 4: Build Deep Water model

H2O Flow (Web UI) | 21

Figure 5: Deep Water backend options

Figure 6: Deep Water GPU selection

22 | Grid Search

8 Grid Search
H2O’s grid search API can be used with Deep Water. Grid search allows users
to specify sets of values for parameter arguments and observe changes in model
behavior. This is useful for hyperparameter tuning. For all grid searches, the
type of search and early stopping can be configured to stop searches if there is
no substantial metric improvement in searches after successive rounds. Search
criteria (search criteria) are passed as a dictionary to the grid search
class:

� strategy: Specify "Cartesian" (default), "RandomDiscrete"

� stopping metric: Specify the metric to use for early stopping.

� stopping rounds: Specify early stopping based on convergence of the
stopping metric. Stop if the simple moving average of length k of
the stopping metric does not improve from k stopping rounds
scoring events. (Use 0 to disable.)

� stopping tolerance: Specify relative tolerance for metric-based
stopping criterion. (Stop if relative improvement is not at least this
much.)

You can read more about grid search in the Hyperparameter Optimization
in H2O blog at https://blog.h2o.ai/2016/06/hyperparameter-
optimization-in-h2o-grid-search-random-search-and-the-
future/.

https://blog.h2o.ai/2016/06/hyperparameter-optimization-in-h2o-grid-search-random-search-and-the-future/
https://blog.h2o.ai/2016/06/hyperparameter-optimization-in-h2o-grid-search-random-search-and-the-future/

Grid Search | 23

8.1 Cartesian Search

A cartesian grid search will run a model for each combination of parameters in
the grid. In the example below, two sets of hidden layers and two learning rates
are specified in the grid, which will result in four models being built.

Example in Python

1 # Import data and transform data
2 train = h2o.import_file("bigdata/laptop/mnist/train.

csv.gz")
3

4 features = list(range(0,784))
5 target = 784
6

7 train[target] = train[target].asfactor()
8

9 # Set up grid
10 hidden_opt = [[200,200], [1024,1024]]
11 learn_rate_opt = [1e-6, 1e-5]
12 hyper_parameters = {"hidden": hidden_opt, "

learning_rate":learn_rate_opt}
13

14 # Build model and train model grid
15 from h2o.grid.grid_search import H2OGridSearch
16 model_grid = H2OGridSearch(H2ODeepWaterEstimator,

hyper_params=hyper_parameters)
17

18 model_grid.train(x=features, y=target, training_frame=
train, epochs=100, activation="Rectifier",
ignore_const_cols=False, mini_batch_size=256,
input_dropout_ratio=0.1, hidden_dropout_ratios
=[0.5,0.5], stopping_rounds=3, stopping_tolerance
=0.05, stopping_metric="misclassification",
score_interval=2, score_duty_cycle=0.5,
score_training_samples=1000,
score_validation_samples=1000, nfolds=5, gpu=True,
seed=1234)

19

20 # Evaluate model
21 print(model_grid)

24 | Grid Search

8.2 Random Search

The hyperparameter search space can become too large to compute exhaustively.
Given a fixed amount of time, making random choices of hyperparameter values
can give results that are on par with or even better than the best results of a
Cartesian search. (See Random Search for Hyper-parameter Optimization [2].)
This example expands the search space for hidden layers and learning rate and
adds a parameter for input dropout. The max search time is set to five minutes.

Example in Python

1 # Set up grid
2 hidden_opt = [[200,200], [1024,1024],

[1024,1024,2048], [200,200,200], [300,300]]
3 learn_rate_opt = [1e-6, 1e-5, 1e-3, 5e-3]
4 in_drop_opt = [0.1, 0.2, 0.3]
5 hyper_parameters = {"hidden": hidden_opt, "

learning_rate":learn_rate_opt, "
input_dropout_ratio": in_drop_opt}

6

7 search_criteria = {"strategy": "RandomDiscrete", "
max_models": 10, "max_runtime_secs": 300, "seed":
1234}

8

9 # Build model and train model grid
10 from h2o.grid.grid_search import H2OGridSearch
11 model_grid = H2OGridSearch(H2ODeepWaterEstimator,

hyper_params=hyper_parameters, search_criteria=
search_criteria)

12

13 model_grid.train(x=features, y=target, training_frame=
train, epochs=100, activation="Rectifier",
ignore_const_cols=False, mini_batch_size=256,
hidden_dropout_ratios=[0.5,0.5], stopping_rounds
=3, stopping_tolerance=0.05, stopping_metric="
misclassification", score_interval=2,
score_duty_cycle=0.5, score_training_samples=1000,
score_validation_samples=1000, nfolds=5, gpu=True

, seed=1234)
14

15 # Evaluate model
16 print(model_grid)

Model Checkpoints | 25

9 Model Checkpoints
Model checkpoints are useful in saving models (i.e. training state) for long
training runs or to resume model training, sometimes with different param-
eters. In the example below, a model is trained for 20 epochs and then
saved via the h2o.save model method. The model is then restored via the
h2o.load model method, and training is resumed.

Example in Python

1 # Import data and transform data
2 train = h2o.import_file("bigdata/laptop/mnist/train.

csv.gz")
3 valid = h2o.import_file("bigdata/laptop/mnist/test.csv

.gz")
4

5 features = list(range(0,784))
6 target = 784
7

8 train[target] = train[target].asfactor()
9 valid[target] = valid[target].asfactor()

10

11 # Build model
12 model = H2ODeepWaterEstimator(epochs=20, activation="

Rectifier", hidden=[200,200], ignore_const_cols=
False, mini_batch_size=256, input_dropout_ratio
=0.1, hidden_dropout_ratios=[0.5,0.5],
stopping_rounds=3, stopping_tolerance=0.05,
stopping_metric="misclassification",
score_interval=2, score_duty_cycle=0.5,
score_training_samples=1000,
score_validation_samples=1000, gpu=True, seed
=1234)

13

14 model.train(x=features, y=target, training_frame=train
, validation_frame=valid)

15

16 # Evaluate model
17 model.show()
18 print(model.scoring_history())
19

20 # Checkpoint model

26 | Model Checkpoints

21 model_path = h2o.save_model(model=model, force=True)
22

23 # Load model
24 model_ckpt = h2o.load_model(model_path)
25

26 # Start training from checkpoint
27 model_warm = H2ODeepWaterEstimator(checkpoint=

model_ckpt.model_id, epochs=100, activation="
Rectifier", hidden=[200,200], ignore_const_cols=
False, mini_batch_size=256, input_dropout_ratio
=0.1, hidden_dropout_ratios=[0.5,0.5],
stopping_rounds=3, stopping_tolerance=0.05,
stopping_metric="misclassification",
score_interval=2, score_duty_cycle=0.5,
score_training_samples=1000,
score_validation_samples=1000, gpu=True, seed
=1234)

28

29 model_warm.train(x=features, y=target, training_frame=
train, validation_frame=valid)

30

31 # Evaluate checkpointed model
32 model_warm.show()
33 print(model_warm.scoring_history())

Ensemble | 27

10 Ensemble
Deep Water models can be ensembled with other models built with H2O,
leveraging the rich algorithmic capabilities of the H2O machine learning plat-
form. Below, three base learners are built with 5-fold cross-validation: GBM,
GLM, and Deep Water. The base learners are then ensembled together
via the stacking method. You can read more about stacking here: http:
//docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/
stacked-ensembles.html.

Example in Python

1 import h2o
2 from h2o.estimators.deepwater import

H2ODeepWaterEstimator
3 from h2o.estimators.gbm import

H2OGradientBoostingEstimator
4 from h2o.estimators.glm import

H2OGeneralizedLinearEstimator
5 from h2o.estimators.stackedensemble import

H2OStackedEnsembleEstimator
6

7 # Import data
8 train = h2o.import_file("/path/to/train-odd.csv.gz",

destination_frame="train.hex")
9 valid = h2o.import_file("/path/to/test-odd.csv.gz",

destination_frame="valid.hex")
10

11 features = list(range(0,784))
12 target = 784
13

14 train[features] = train[features]/255
15 train[target] = train[target].asfactor()
16 valid[features] = valid[features]/255
17 valid[target] = valid[target].asfactor()
18

19 nfolds = 5
20

21 # GBM Model
22 gbm_model = H2OGradientBoostingEstimator(distribution=

"bernoulli", ntrees=100, nfolds=nfolds,
ignore_const_cols=False,

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/stacked-ensembles.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/stacked-ensembles.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/stacked-ensembles.html

28 | Ensemble

keep_cross_validation_predictions=True,
fold_assignment="Modulo")

23 gbm_model.train(x=features, y=target, training_frame=
train, model_id="gbm_model")

24 gbm_model.show()
25

26 # GLM Model
27 glm_model = H2OGeneralizedLinearEstimator(family="

binomial", lambda_=0.0001, alpha=0.5, nfolds=
nfolds, ignore_const_cols=False,
keep_cross_validation_predictions=True,
fold_assignment="Modulo")

28 glm_model.train(x=features, y=target, training_frame=
train, model_id="glm_model")

29 glm_model.show()
30

31 # Deep Water Model
32 dw_model = H2ODeepWaterEstimator(epochs=3, network="

lenet", ignore_const_cols=False, image_shape
=[28,28], channels=1, standardize=False, seed
=1234, nfolds=nfolds,
keep_cross_validation_predictions=True,
fold_assignment="Modulo")

33 dw_model.train(x=features, y=target, training_frame=
train, model_id="dw_model")

34 dw_model.show()
35

36 # Stacked Ensemble
37 stack_all = H2OStackedEnsembleEstimator(base_models=[

gbm_model.model_id, glm_model.model_id, dw_model.
model_id])

38 stack_all.train(x=features, y=target, training_frame=
train, validation_frame=valid, model_id="stack_all
")

39 stack_all.model_performance()

Deep Features and Similarity | 29

11 Deep Features and Similarity
The hidden layers of a trained model can provide a useful feature representation
of input data. A Deep Water model’s deepfeatures method allows you
to extract hidden layer feature representations of input data. These extracted
feature representations can be used in several ways. In the example below,
features are extracted from a layer of a pre-trained convolutional network. (Refer
to Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift [4].) The extracted features are then used to train a
multinomial GLM model.

Example in Python

1 # Load network
2 network_model = H2ODeepWaterEstimator(epochs=0,

mini_batch_size=32, network="user",
network_definition_file="Inception_BN-symbol.json"
, network_parameters_file="Inception_BN-0039.
params", mean_image_file="mean_224.nd",
image_shape=[224,224], channels=3)

3

4 network_model.train(x=[0], y=1, training_frame=train)
5

6 # Extract deep features
7 extracted_features = network_model.deepfeatures(train,

"global_pool_output")
8 print("shape: " + str(extracted_features.shape))
9 print(extracted_features[:5,:3])

10

11 # Merge deep features with target and split frame
12 extracted_features["target"] = train[1]
13 features = [x for x in extracted_features.columns if x

not in ["target"]]
14 train, valid = extracted_features.split_frame(ratios

=[0.8])
15

16 # Build multinomial GLM
17 glm_model = H2OGeneralizedLinearEstimator(family="

multinomial")
18 glm_model.train(x=features, y="target", training_frame

=train, validation_frame=valid)
19

30 | Deep Features and Similarity

20 # Evaluate model
21 glm_model.show()

1 (267, 1024)
2 DF.global_pool_output.C1 DF.global_pool_output.C2

DF.global_pool_output.C3
3 -------------------------- --------------------------

4 0.801623 0.42203

0.416217
5 1.09336 0.704138

0.420898
6 0.594622 0.161074

0.357225
7 0.875428 0.865322

0.532098
8 1.11859 0.625728

0.348317
9

10 [5 rows x 3 columns]

Another use of hidden layer feature representation is for unsupervised applica-
tions, such as clustering or recommendations. The deep features are used as
vector representations whereby similarity measures can be computed. Given two
H2OFrames X and Y, the following will compute a resultant H2OFrame whereby
a similarity measure, specified by the similarity parameter, is computed
for each vector in X and Y: X.distance(Y, similarity).

We can express this mathematically.

X =

x1,1 . . . x1,P

...
. . .

...
xN,1 . . . xN,P

 , where xi = [xi,1, . . . , xi,P]

Y =

 y1,1 . . . y1,P
...

. . .
...

yM,1 . . . yM,P

 , where yi = [yi,1, . . . , yi,P]

distance (X,Y) = Z : zi,j = similarity (xi,yj), where X ∈ RN×P ,Y ∈
RM×P ,Z ∈ RN×M

Deep Features and Similarity | 31

The following are the various similarity measures that can be computed.

`1 similarity ("l1"): zi,j =

P∑
k=1

|xi,k − yj,k|

`2 similarity ("l2"): zi,j =

√√√√ P∑
k=1

(xi,k − yj,k)
2

cosine similarity ("cosine"): zi,j =
xi · yj

||xi||2||yj ||2
=

P∑
k=1

xi,kyj,k√√√√ P∑
k=1

x2
i,k

√√√√ P∑
k=1

y2j,k

cosine squared similarity ("cosine sq"): zi,j =

(
xi · yj

||xi||2||yj ||2

)2

The following code snippet uses the same extracted features from the pre-
vious example. This time, the extracted features frame is split into two frames,
the first three rows/vectors become a queries frame, and the rest of the
rows/vectors are assigned to a references frame. A similarity frame is
created between the references and queries frames, where each element
xi,j is the similarity measure between reference vector i and queries
vector j.

Example in Python

1 # Seperate records to a references and queries
2 references = extracted_features[5:,:]
3 queries = extracted_features[:3,:]
4

5 # Compute similarity
6 similarity = references.distance(queries, "cosine")
7

8 # Verify shapes
9 print("references: " + str(references.shape))

10 print("queries: " + str(queries.shape))
11 print("similarity: " + str(similarity.shape))
12

13 # View similarity frame
14 print(similarity.head())

32 | Deployment for Inference

The following is the output of the code snippet.

1 references: (262, 1024)
2 queries: (3, 1024)
3 similarity: (262, 3)
4 C1 C2 C3
5 ----------- ----------- -----------
6 0.000700166 0.000890456 0.00115243
7 0.000714771 0.000971895 0.00114015
8 0.000725556 0.000886771 0.00108941
9 0.000583118 0.000677621 0.000848235

10 0.000709113 0.00075652 0.000968125
11 0.000779529 0.00103488 0.00124044
12 0.000725078 0.00103037 0.00122527
13 0.00077362 0.000987806 0.00126681
14 0.000733625 0.000879774 0.00120423
15 0.000823687 0.000976036 0.00123983
16

17 [10 rows x 3 columns]

12 Multi-GPU
Multi-GPU support is available through backend-specific mechanisms. For ex-
ample, in TensorFlow, multi-GPU specification can be done through the compu-
tational graph. For examples, please visit: https://github.com/h2oai/
h2o-3/tree/master/examples/deeplearning/notebooks.

13 Deployment for Inference

13.1 Model Object Optimized (MOJO)

With H2O, you can convert your deep water models into a binary model object
optimized (MOJO) formats. This format is easily embeddable in any Java
environment and independent of an H2O cluster. The only compilation and run-
time dependencies for generated models are the h2o-genmodel.jar and the
deepwater-all.jar files, which are produced as part of the build output.
Deep Water models can be exported as a MOJO and embedded in a custom Java
application. You can read more about MOJOs here: http://docs.h2o.ai/
h2o/latest-stable/h2o-genmodel/javadoc/index.html.

https://github.com/h2oai/h2o-3/tree/master/examples/deeplearning/notebooks
https://github.com/h2oai/h2o-3/tree/master/examples/deeplearning/notebooks
http://docs.h2o.ai/h2o/latest-stable/h2o-genmodel/javadoc/index.html
http://docs.h2o.ai/h2o/latest-stable/h2o-genmodel/javadoc/index.html

Deployment for Inference | 33

Deep Water MOJOs can be downloaded from H2O Flow by clicking Download
Model Deployment Package from a Deep Water model. (See Figure 7.)
From the Python API, you can use the download mojo method for a model.
For example:

model.download_mojo(path="/path/to/model_mojo",
get_genmodel_jar=True)

Figure 7: Deep Water model actions

13.2 Prediction Service Builder

The H2O Prediction Service Builder is a standalone web service application
that can help users compile MOJOs and build Web Archive (War) files for
prediction web services. The details of how to build the H2O Prediction Service
Builder can be found here: https://github.com/h2oai/steam/tree/
master/prediction-service-builder.

Before generating a War file, be sure that you have both the h2o-genmodel.jar
and deepwater-all.jar files. You can obtain each of these by running
the following:

curl localhost:54321/3/h2o-genmodel.jar > h2o-genmodel.jar

curl localhost:54321/3/deepwater-all.jar > deepwater-all.jar

War files can be generated using the Prediction Service Builder Web UI or via
command line. For example, submitting the following command submits the
necessary dependencies to the Prediction Server Builder (running on localhost
on port 55000) to create an example.war file.

curl -X POST \
--form mojo=@mojo.zip \
--form jar=@h2o-genmodel.jar \
--form deepwater=@deepwater-all.jar \
localhost:55000/makewar > example.war

The example.war file can be started using an appropriate Jetty runner. For
example, the following command starts the prediction service on port 55001:
java -jar jetty-runner-9.3.9.M1.jar --port 55001 example.war

https://github.com/h2oai/steam/tree/master/prediction-service-builder
https://github.com/h2oai/steam/tree/master/prediction-service-builder

34 | Errata

Upon completion, a prediction service for scoring will be available at
http://localhost:55001.

14 Upcoming
At the time of this writing, we have many exciting upcoming releases and initiatives
at H2O.ai.

� Machine Learning and GPUs: H2O.ai has developed the fastest scalable,
distributed in-memory machine learning platform, and we now extend its capa-
bilities to GPUs, aiming to create the fastest artificial intelligence platform on
GPUs. Stay tuned for more of our algorithms exploiting GPU-acceleration.

� Automatic Machine Learning: H2O AutoML is an automatic machine learning
capability that will encapsulate and automate best practices in data cleaning,
feature engineering, hyper-parameter search, and ensemble generation.

� Machine Learning Interpretability: Often times, especially in regulated in-
dustries, model transparency and explanation become just as paramount as
predictive performance. Through visualizations and various techniques, machine
learning interpretability functionality will continually make its way to the H2O
platform. For details on the ideas around machine learning interpretability, please
visit: https://www.oreilly.com/ideas/ideas-on-interpreting-
machine-learning.

15 Acknowledgements
We would like to acknowledge the following individuals for their contributions to and
review of this booklet: Jo-Fai (Joe) Chow, Megan Kurka, Erin LeDell, Ray Peck,
Patrick Hall, and Surekha Jadhwani.

16 Errata
This version of H2O Deep Water is still a pre-release version. An errata document
is available, describing current known issues that you might encounter when trying
out Deep Water. This document is available in the h2o-3 GitHub repo at https:
//github.com/h2oai/h2o-3/blob/master/h2o-docs/src/booklets/
source/DeepWaterBookletErrata.md.

If the Errata document does not answer your question, feel free to post your question to
Stack Overflow using the h2o tag at http://stackoverflow.com/questions/
tagged/h2o.

https://www.oreilly.com/ideas/ideas-on-interpreting-machine-learning
https://www.oreilly.com/ideas/ideas-on-interpreting-machine-learning
https://github.com/h2oai/h2o-3/blob/master/h2o-docs/src/booklets/source/DeepWaterBookletErrata.md
https://github.com/h2oai/h2o-3/blob/master/h2o-docs/src/booklets/source/DeepWaterBookletErrata.md
https://github.com/h2oai/h2o-3/blob/master/h2o-docs/src/booklets/source/DeepWaterBookletErrata.md
http://stackoverflow.com/questions/tagged/h2o
http://stackoverflow.com/questions/tagged/h2o

References | 35

17 References
1. A. Arora, A. Candel, J. Lanford, E. LeDell, , and V. Parmar. Deep Learning

with H2O, August 2015. URL http://h2o.ai/resources

2. James Bergstra and Yoshua Bengio. Random Search for Hyper-parameter
Optimization. J. Mach. Learn. Res., 13:281–305, February 2012. ISSN 1532-
4435. URL http://www.jmlr.org/papers/volume13/bergstra12a/
bergstra12a.pdf

3. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. 2015. URL https://arxiv.org/pdf/
1512.03385.pdf

4. Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. 2015. URL https:
//arxiv.org/pdf/1502.03167.pdf

5. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classifi-
cation with Deep Convolutional Neural Networks. In F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural In-
formation Processing Systems 25, pages 1097–1105. 2012. URL https://
papers.nips.cc/paper/4824-imagenet-classification-with-deep-
convolutional-neural-networks.pdf

6. Yann LeCun, Corinna Cortes, and Christopher J.C Burgres. The MNIST
Database. URL http://yann.lecun.com/exdb/mnist/

7. Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
Based Learning Applied to Document Recognition. In Proceedings of the
IEEE, Nov. 1998. URL http://yann.lecun.com/exdb/publis/pdf/
lecun-01a.pdf

8. Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. 2014. URL http://arxiv.org/pdf/
1207.0580.pdf

9. Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going Deeper with Convolutions. 2014. URL https://arxiv.org/
pdf/1409.4842.pdf

http://h2o.ai/resources
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://arxiv.org/pdf/1207.0580.pdf
http://arxiv.org/pdf/1207.0580.pdf
https://arxiv.org/pdf/1409.4842.pdf
https://arxiv.org/pdf/1409.4842.pdf

36 | Authors

18 Authors
Wen Phan

Wen Phan is a senior solutions architect at H2O.ai. Wen works with customers and
organizations to architect systems, smarter applications, and data products to make
better decisions, achieve positive outcomes, and transform the way they do business.
Wen holds a B.S. in electrical engineering and M.S. in analytics and decision sciences.
Follow him on Twitter: @wenphan

Magnus Stensmo

Magnus has been a scientist and software engineer in workplaces ranging from new
startups to large companies. Using machine learning and information retrieval, he has
built numerous systems for internet and enterprise software companies, including large
scale real-time similarity search, product recommendation systems, text analysis, and
medical and machine diagnosis. Magnus holds a PhD in Computer Science and an
MSc in Computer Science and Engineering from the Royal Institute of Technology
(KTH) in Stockholm, Sweden. He has also studied neuroscience, philosophy, business,
and linguistics.

Mateusz Dymczyk

Mateusz is a software developer who loves all things distributed, machine learning, and
data juggling. He obtained his M.Sc. in Computer Science from AGH UST in Krakow,
Poland, during which he did an exchange at LECE Paris in France and worked on
distributed flight booking systems. After graduation, he moved to Tokyo, where he
is still currently based, to work as a researcher at Fujitsu Laboratories on machine
learning and NLP projects. In his spare time, he tries to be part of the IT community
by organizing, attending, and speaking at conferences and meet ups. Follow him on
Twitter: @mdymczyk.

Arno Candel

Arno is the Chief Technology Officer of H2Oa.ai. He is also the main author of
H2O Deep Learning. Arno holds a PhD and a Masters summa cum laude in Physics
from ETH Zurich, Switzerland. He has authored dozens of scientific papers and is a
sought-after conference speaker. Arno was named 2014 Big Data All-Star by Fortune
Magazine. Follow him on Twitter: @ArnoCandel.

Qiang Kou

Qiang Kou was an early developer for Deep Water. He is currently pursuing his PhD
in informatics at Indiana University. Qiang is also an Rcpp core team member and
Apache MXNet committer. Follow him on Twitter: @KKusingR

	Introduction
	What is H2O?
	Installation
	Build from Source
	Amazon Machine Image
	Docker Image
	Sample Data
	Citation

	H2O Deep Water Overview
	H2O Deep Learning
	Modern Trends in Deep Learning
	Why H2O Deep Water?

	Quick Start: MNIST Classification
	Backends
	GPU and CPU
	Using Deep Water with R

	Image Classification
	Data
	Image Specification
	Pre-Defined Networks
	User-Defined Networks
	MXNet
	TensorFlow

	Pre-Trained Networks
	MXNet
	TensorFlow

	H2O Flow (Web UI)
	Grid Search
	Cartesian Search
	Random Search

	Model Checkpoints
	Ensemble
	Deep Features and Similarity
	Multi-GPU
	Deployment for Inference
	Model Object Optimized (MOJO)
	Prediction Service Builder

	Upcoming
	Acknowledgements
	Errata
	References
	Authors

