Source code for h2o.estimators.naive_bayes

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
#
# This file is auto-generated by h2o-3/h2o-bindings/bin/gen_python.py
# Copyright 2016 H2O.ai;  Apache License Version 2.0 (see LICENSE for details)
#
from __future__ import absolute_import, division, print_function, unicode_literals

from h2o.estimators.estimator_base import H2OEstimator
from h2o.exceptions import H2OValueError
from h2o.frame import H2OFrame
from h2o.utils.typechecks import assert_is_type, Enum, numeric


[docs]class H2ONaiveBayesEstimator(H2OEstimator): """ Naive Bayes The naive Bayes classifier assumes independence between predictor variables conditional on the response, and a Gaussian distribution of numeric predictors with mean and standard deviation computed from the training dataset. When building a naive Bayes classifier, every row in the training dataset that contains at least one NA will be skipped completely. If the test dataset has missing values, then those predictors are omitted in the probability calculation during prediction. """ algo = "naivebayes" def __init__(self, **kwargs): super(H2ONaiveBayesEstimator, self).__init__() self._parms = {} names_list = {"model_id", "nfolds", "seed", "fold_assignment", "fold_column", "keep_cross_validation_models", "keep_cross_validation_predictions", "keep_cross_validation_fold_assignment", "training_frame", "validation_frame", "response_column", "ignored_columns", "ignore_const_cols", "score_each_iteration", "balance_classes", "class_sampling_factors", "max_after_balance_size", "max_confusion_matrix_size", "max_hit_ratio_k", "laplace", "min_sdev", "eps_sdev", "min_prob", "eps_prob", "compute_metrics", "max_runtime_secs", "export_checkpoints_dir"} if "Lambda" in kwargs: kwargs["lambda_"] = kwargs.pop("Lambda") for pname, pvalue in kwargs.items(): if pname == 'model_id': self._id = pvalue self._parms["model_id"] = pvalue elif pname in names_list: # Using setattr(...) will invoke type-checking of the arguments setattr(self, pname, pvalue) else: raise H2OValueError("Unknown parameter %s = %r" % (pname, pvalue)) @property def nfolds(self): """ Number of folds for K-fold cross-validation (0 to disable or >= 2). Type: ``int`` (default: ``0``). """ return self._parms.get("nfolds") @nfolds.setter def nfolds(self, nfolds): assert_is_type(nfolds, None, int) self._parms["nfolds"] = nfolds @property def seed(self): """ Seed for pseudo random number generator (only used for cross-validation and fold_assignment="Random" or "AUTO") Type: ``int`` (default: ``-1``). """ return self._parms.get("seed") @seed.setter def seed(self, seed): assert_is_type(seed, None, int) self._parms["seed"] = seed @property def fold_assignment(self): """ Cross-validation fold assignment scheme, if fold_column is not specified. The 'Stratified' option will stratify the folds based on the response variable, for classification problems. One of: ``"auto"``, ``"random"``, ``"modulo"``, ``"stratified"`` (default: ``"auto"``). """ return self._parms.get("fold_assignment") @fold_assignment.setter def fold_assignment(self, fold_assignment): assert_is_type(fold_assignment, None, Enum("auto", "random", "modulo", "stratified")) self._parms["fold_assignment"] = fold_assignment @property def fold_column(self): """ Column with cross-validation fold index assignment per observation. Type: ``str``. """ return self._parms.get("fold_column") @fold_column.setter def fold_column(self, fold_column): assert_is_type(fold_column, None, str) self._parms["fold_column"] = fold_column @property def keep_cross_validation_models(self): """ Whether to keep the cross-validation models. Type: ``bool`` (default: ``True``). """ return self._parms.get("keep_cross_validation_models") @keep_cross_validation_models.setter def keep_cross_validation_models(self, keep_cross_validation_models): assert_is_type(keep_cross_validation_models, None, bool) self._parms["keep_cross_validation_models"] = keep_cross_validation_models @property def keep_cross_validation_predictions(self): """ Whether to keep the predictions of the cross-validation models. Type: ``bool`` (default: ``False``). """ return self._parms.get("keep_cross_validation_predictions") @keep_cross_validation_predictions.setter def keep_cross_validation_predictions(self, keep_cross_validation_predictions): assert_is_type(keep_cross_validation_predictions, None, bool) self._parms["keep_cross_validation_predictions"] = keep_cross_validation_predictions @property def keep_cross_validation_fold_assignment(self): """ Whether to keep the cross-validation fold assignment. Type: ``bool`` (default: ``False``). """ return self._parms.get("keep_cross_validation_fold_assignment") @keep_cross_validation_fold_assignment.setter def keep_cross_validation_fold_assignment(self, keep_cross_validation_fold_assignment): assert_is_type(keep_cross_validation_fold_assignment, None, bool) self._parms["keep_cross_validation_fold_assignment"] = keep_cross_validation_fold_assignment @property def training_frame(self): """ Id of the training data frame. Type: ``H2OFrame``. """ return self._parms.get("training_frame") @training_frame.setter def training_frame(self, training_frame): assert_is_type(training_frame, None, H2OFrame) self._parms["training_frame"] = training_frame @property def validation_frame(self): """ Id of the validation data frame. Type: ``H2OFrame``. """ return self._parms.get("validation_frame") @validation_frame.setter def validation_frame(self, validation_frame): assert_is_type(validation_frame, None, H2OFrame) self._parms["validation_frame"] = validation_frame @property def response_column(self): """ Response variable column. Type: ``str``. """ return self._parms.get("response_column") @response_column.setter def response_column(self, response_column): assert_is_type(response_column, None, str) self._parms["response_column"] = response_column @property def ignored_columns(self): """ Names of columns to ignore for training. Type: ``List[str]``. """ return self._parms.get("ignored_columns") @ignored_columns.setter def ignored_columns(self, ignored_columns): assert_is_type(ignored_columns, None, [str]) self._parms["ignored_columns"] = ignored_columns @property def ignore_const_cols(self): """ Ignore constant columns. Type: ``bool`` (default: ``True``). """ return self._parms.get("ignore_const_cols") @ignore_const_cols.setter def ignore_const_cols(self, ignore_const_cols): assert_is_type(ignore_const_cols, None, bool) self._parms["ignore_const_cols"] = ignore_const_cols @property def score_each_iteration(self): """ Whether to score during each iteration of model training. Type: ``bool`` (default: ``False``). """ return self._parms.get("score_each_iteration") @score_each_iteration.setter def score_each_iteration(self, score_each_iteration): assert_is_type(score_each_iteration, None, bool) self._parms["score_each_iteration"] = score_each_iteration @property def balance_classes(self): """ Balance training data class counts via over/under-sampling (for imbalanced data). Type: ``bool`` (default: ``False``). """ return self._parms.get("balance_classes") @balance_classes.setter def balance_classes(self, balance_classes): assert_is_type(balance_classes, None, bool) self._parms["balance_classes"] = balance_classes @property def class_sampling_factors(self): """ Desired over/under-sampling ratios per class (in lexicographic order). If not specified, sampling factors will be automatically computed to obtain class balance during training. Requires balance_classes. Type: ``List[float]``. """ return self._parms.get("class_sampling_factors") @class_sampling_factors.setter def class_sampling_factors(self, class_sampling_factors): assert_is_type(class_sampling_factors, None, [float]) self._parms["class_sampling_factors"] = class_sampling_factors @property def max_after_balance_size(self): """ Maximum relative size of the training data after balancing class counts (can be less than 1.0). Requires balance_classes. Type: ``float`` (default: ``5``). """ return self._parms.get("max_after_balance_size") @max_after_balance_size.setter def max_after_balance_size(self, max_after_balance_size): assert_is_type(max_after_balance_size, None, float) self._parms["max_after_balance_size"] = max_after_balance_size @property def max_confusion_matrix_size(self): """ [Deprecated] Maximum size (# classes) for confusion matrices to be printed in the Logs Type: ``int`` (default: ``20``). """ return self._parms.get("max_confusion_matrix_size") @max_confusion_matrix_size.setter def max_confusion_matrix_size(self, max_confusion_matrix_size): assert_is_type(max_confusion_matrix_size, None, int) self._parms["max_confusion_matrix_size"] = max_confusion_matrix_size @property def max_hit_ratio_k(self): """ Max. number (top K) of predictions to use for hit ratio computation (for multi-class only, 0 to disable) Type: ``int`` (default: ``0``). """ return self._parms.get("max_hit_ratio_k") @max_hit_ratio_k.setter def max_hit_ratio_k(self, max_hit_ratio_k): assert_is_type(max_hit_ratio_k, None, int) self._parms["max_hit_ratio_k"] = max_hit_ratio_k @property def laplace(self): """ Laplace smoothing parameter Type: ``float`` (default: ``0``). """ return self._parms.get("laplace") @laplace.setter def laplace(self, laplace): assert_is_type(laplace, None, numeric) self._parms["laplace"] = laplace @property def min_sdev(self): """ Min. standard deviation to use for observations with not enough data Type: ``float`` (default: ``0.001``). """ return self._parms.get("min_sdev") @min_sdev.setter def min_sdev(self, min_sdev): assert_is_type(min_sdev, None, numeric) self._parms["min_sdev"] = min_sdev @property def eps_sdev(self): """ Cutoff below which standard deviation is replaced with min_sdev Type: ``float`` (default: ``0``). """ return self._parms.get("eps_sdev") @eps_sdev.setter def eps_sdev(self, eps_sdev): assert_is_type(eps_sdev, None, numeric) self._parms["eps_sdev"] = eps_sdev @property def min_prob(self): """ Min. probability to use for observations with not enough data Type: ``float`` (default: ``0.001``). """ return self._parms.get("min_prob") @min_prob.setter def min_prob(self, min_prob): assert_is_type(min_prob, None, numeric) self._parms["min_prob"] = min_prob @property def eps_prob(self): """ Cutoff below which probability is replaced with min_prob Type: ``float`` (default: ``0``). """ return self._parms.get("eps_prob") @eps_prob.setter def eps_prob(self, eps_prob): assert_is_type(eps_prob, None, numeric) self._parms["eps_prob"] = eps_prob @property def compute_metrics(self): """ Compute metrics on training data Type: ``bool`` (default: ``True``). """ return self._parms.get("compute_metrics") @compute_metrics.setter def compute_metrics(self, compute_metrics): assert_is_type(compute_metrics, None, bool) self._parms["compute_metrics"] = compute_metrics @property def max_runtime_secs(self): """ Maximum allowed runtime in seconds for model training. Use 0 to disable. Type: ``float`` (default: ``0``). """ return self._parms.get("max_runtime_secs") @max_runtime_secs.setter def max_runtime_secs(self, max_runtime_secs): assert_is_type(max_runtime_secs, None, numeric) self._parms["max_runtime_secs"] = max_runtime_secs @property def export_checkpoints_dir(self): """ Automatically export generated models to this directory. Type: ``str``. """ return self._parms.get("export_checkpoints_dir") @export_checkpoints_dir.setter def export_checkpoints_dir(self, export_checkpoints_dir): assert_is_type(export_checkpoints_dir, None, str) self._parms["export_checkpoints_dir"] = export_checkpoints_dir