Migration Guide¶
Migration guide between Sparkling Water versions.
From 3.28.1 to 3.30¶
Removal of Deprecated Methods and Classes¶
On PySparkling, passing authentication on
H2OContext
viaauth
param is removed in favor of methodssetUserName
andsetPassword
ond theH2OConf
or via the Spark optionsspark.ext.h2o.user.name
andspark.ext.h2o.password
directly.On RSparkling, the method
h2o_context
is removed. To create H2OContext, please callhc <- H2OContext.getOrCreate(sc)
. Also the methodsh2o_flow
,as_h2o_frame
andas_spark_dataframe
are removed. Please use the methods available on theH2OContext
instance created viahc <- H2OContext.getOrCreate(sc)
. Instead ofh2o_flow
, usehc$openFlow
, instead ofas_h2o_frame
, useasH2OFrame
and instead ofas_spark_dataframe
useasSparkFrame
.Also the
H2OContext.getOrCreate(sc)
does not haveusername
andpassword
arguments anymore. The correct way how to pass authentication details toH2OContext
is viaH2OConf
class, such as:conf <- H2OConf(sc) conf$setUserName(username) conf$setPassword(password) hc <- H2OContext(sc, conf)
The Spark options
spark.ext.h2o.user.name
andspark.ext.h2o.password
correspond to these setters and can be also used directly.In
H2OContext
Python API, the methodas_spark_frame
is replaced by the methodasSparkFrame
and the methodas_h2o_frame
is replaced byasH2OFrame
.In
H2OXGBoost
Scala And Python API, the methodsgetNEstimators
andsetNEstimators
are removed. Please usegetNtrees
andsetNtrees
instead.The default value of
spark.ext.h2o.internal_secure_connections
has changed totrue
which means that Sparkling Water in internal backend and automatic mode of external backend is now running secured by default.In Scala and Python API for tree-based algorithms, the method
getR2Stopping
is removed in favor ofgetStoppingRounds
,getStoppingMetric
,getStoppingTolerance
methods and the methodsetR2Stopping
is removed in favor ofsetStoppingRounds
,setStoppingMetric
,setStoppingTolerance
methods.On H2OConf Python API, the following methods have been renamed to be consistent with the Scala counterparts:
h2o_cluster
->h2oCluster
h2o_cluster_host
->h2oClusterHost
h2o_cluster_port
->h2oClusterPort
cluster_size
->clusterSize
cluster_start_timeout
->clusterStartTimeout
cluster_config_file
->clusterInfoFile
mapper_xmx
->mapperXmx
hdfs_output_dir
->HDFSOutputDir
cluster_start_mode
->clusterStartMode
is_auto_cluster_start_used
->isAutoClusterStartUsed
is_manual_cluster_start_used
->isManualClusterStartUsed
h2o_driver_path
->h2oDriverPath
yarn_queue
->YARNQueue
is_kill_on_unhealthy_cluster_enabled
->isKillOnUnhealthyClusterEnabled
kerberos_principal
->kerberosPrincipal
kerberos_keytab
->kerberosKeytab
run_as_user
->runAsUser
set_h2o_cluster
->setH2OCluster
set_cluster_size
->setClusterSize
set_cluster_start_timeout
->setClusterStartTimeout
set_cluster_config_file
->setClusterConfigFile
set_mapper_xmx
->setMapperXmx
set_hdfs_output_dir
->setHDFSOutputDir
use_auto_cluster_start
->useAutoClusterStart
use_manual_cluster_start
->useManualClusterStart
set_h2o_driver_path
->setH2ODriverPath
set_yarn_queue
->setYARNQueue
set_kill_on_unhealthy_cluster_enabled
->setKillOnUnhealthyClusterEnabled
set_kill_on_unhealthy_cluster_disabled
->setKillOnUnhealthyClusterDisabled
set_kerberos_principal
->setKerberosPrincipal
set_kerberos_keytab
->setKerberosKeytab
set_run_as_user
->setRunAsUser
num_h2o_workers
->numH2OWorkers
drdd_mul_factor
->drddMulFactor
num_rdd_retries
->numRddRetries
default_cloud_size
->defaultCloudSize
subseq_tries
->subseqTries
h2o_node_web_enabled
->h2oNodeWebEnabled
node_iced_dir
->nodeIcedDir
set_num_h2o_workers
->setNumH2OWorkers
set_drdd_mul_factor
->setDrddMulFactor
set_num_rdd_retries
->setNumRddRetries
set_default_cloud_size
->setDefaultCloudSize
set_subseq_tries
->setSubseqTries
set_h2o_node_web_enabled
->setH2ONodeWebEnabled
set_h2o_node_web_disabled
->setH2ONodeWebDisabled
set_node_iced_dir
->setNodeIcedDir
backend_cluster_mode
->backendClusterMode
cloud_name
->cloudName
is_h2o_repl_enabled
->isH2OReplEnabled
scala_int_default_num
->scalaIntDefaultNum
is_cluster_topology_listener_enabled
->isClusterTopologyListenerEnabled
is_spark_version_check_enabled
->isSparkVersionCheckEnabled
is_fail_on_unsupported_spark_param_enabled
->isFailOnUnsupportedSparkParamEnabled
jks_pass
->jksPass
jks_alias
->jksAlias
hash_login
->hashLogin
ldap_login
->ldapLogin
kerberos_login
->kerberosLogin
login_conf
->loginConf
ssl_conf
->sslConf
auto_flow_ssl
->autoFlowSsl
h2o_node_log_level
->h2oNodeLogLevel
h2o_node_log_dir
->h2oNodeLogDir
cloud_timeout
->cloudTimeout
node_network_mask
->nodeNetworkMask
stacktrace_collector_interval
->stacktraceCollectorInterval
context_path
->contextPath
flow_scala_cell_async
->flowScalaCellAsync
max_parallel_scala_cell_jobs
->maxParallelScalaCellJobs
internal_port_offset
->internalPortOffset
mojo_destroy_timeout
->mojoDestroyTimeout
node_base_port
->nodeBasePort
node_extra_properties
->nodeExtraProperties
flow_extra_http_headers
->flowExtraHttpHeaders
is_internal_secure_connections_enabled
->isInternalSecureConnectionsEnabled
flow_dir
->flowDir
client_ip
->clientIp
client_iced_dir
->clientIcedDir
h2o_client_log_level
->h2oClientLogLevel
h2o_client_log_dir
->h2oClientLogDir
client_base_port
->clientBasePort
client_web_port
->clientWebPort
client_verbose_output
->clientVerboseOutput
client_network_mask
->clientNetworkMask
ignore_spark_public_dns
->ignoreSparkPublicDNS
client_web_enabled
->clientWebEnabled
client_flow_baseurl_override
->clientFlowBaseurlOverride
client_extra_properties
->clientExtraProperties
runs_in_external_cluster_mode
->runsInExternalClusterMode
runs_in_internal_cluster_mode
->runsInInternalClusterMode
client_check_retry_timeout
->clientCheckRetryTimeout
set_internal_cluster_mode
->setInternalClusterMode
set_external_cluster_mode
->setExternalClusterMode
set_cloud_name
->setCloudName
set_nthreads
->setNthreads
set_repl_enabled
->setReplEnabled
set_repl_disabled
->setReplDisabled
set_default_num_repl_sessions
->setDefaultNumReplSessions
set_cluster_topology_listener_enabled
->setClusterTopologyListenerEnabled
set_cluster_topology_listener_disabled
->setClusterTopologyListenerDisabled
set_spark_version_check_disabled
->setSparkVersionCheckDisabled
set_fail_on_unsupported_spark_param_enabled
->setFailOnUnsupportedSparkParamEnabled
set_fail_on_unsupported_spark_param_disabled
->setFailOnUnsupportedSparkParamDisabled
set_jks
->setJks
set_jks_pass
->setJksPass
set_jks_alias
->setJksAlias
set_hash_login_enabled
->setHashLoginEnabled
set_hash_login_disabled
->setHashLoginDisabled
set_ldap_login_enabled
->setLdapLoginEnabled
set_ldap_login_disabled
->setLdapLoginDisabled
set_kerberos_login_enabled
->setKerberosLoginEnabled
set_kerberos_login_disabled
->setKerberosLoginDisabled
set_login_conf
->setLoginConf
set_ssl_conf
->setSslConf
set_auto_flow_ssl_enabled
->setAutoFlowSslEnabled
set_auto_flow_ssl_disabled
->setAutoFlowSslDisabled
set_h2o_node_log_level
->setH2ONodeLogLevel
set_h2o_node_log_dir
->setH2ONodeLogDir
set_cloud_timeout
->setCloudTimeout
set_node_network_mask
->setNodeNetworkMask
set_stacktrace_collector_interval
->setStacktraceCollectorInterval
set_context_path
->setContextPath
set_flow_scala_cell_async_enabled
->setFlowScalaCellAsyncEnabled
set_flow_scala_cell_async_disabled
->setFlowScalaCellAsyncDisabled
set_max_parallel_scala_cell_jobs
->setMaxParallelScalaCellJobs
set_internal_port_offset
->setInternalPortOffset
set_node_base_port
->setNodeBasePort
set_mojo_destroy_timeout
->setMojoDestroyTimeout
set_node_extra_properties
->setNodeExtraProperties
set_flow_extra_http_headers
->setFlowExtraHttpHeaders
set_internal_secure_connections_enabled
->setInternalSecureConnectionsEnabled
set_internal_secure_connections_disabled
->setInternalSecureConnectionsDisabled
set_flow_dir
->setFlowDir
set_client_ip
->setClientIp
set_client_iced_dir
->setClientIcedDir
set_h2o_client_log_level
->setH2OClientLogLevel
set_h2o_client_log_dir
->setH2OClientLogDir
set_client_port_base
->setClientPortBase
set_client_web_port
->setClientWebPort
set_client_verbose_enabled
->setClientVerboseEnabled
set_client_verbose_disabled
->setClientVerboseDisabled
set_client_network_mask
->setClientNetworkMask
set_ignore_spark_public_dns_enabled
->setIgnoreSparkPublicDNSEnabled
set_ignore_spark_public_dns_disabled
->setIgnoreSparkPublicDNSDisabled
set_client_web_enabled
->setClientWebEnabled
set_client_web_disabled
->setClientWebDisabled
set_client_flow_baseurl_override
->setClientFlowBaseurlOverride
set_client_check_retry_timeout
->setClientCheckRetryTimeout
set_client_extra_properties
->setClientExtraProperties
From 3.28.0 to 3.28.1¶
- On
H2OConf
Python API, the methodsexternal_write_confirmation_timeout
andset_external_write_confirmation_timeout
are removed without replacement. OnH2OConf
Scala API, the methodsexternalWriteConfirmationTimeout
andsetExternalWriteConfirmationTimeout
are removed without replacement. Also the optionspark.ext.h2o.external.write.confirmation.timeout
does not have any effect anymore.
From 3.26 To 3.28.0¶
Passing Authentication in Scala¶
The users of Scala who set up any form of authentication on the backend side are now required to specify credentials on the
H2OConf
object via setUserName
and setPassword
. It is also possible to specify these directly
as Spark options spark.ext.h2o.user.name
and spark.ext.h2o.password
. Note: Actually only users of external
backend need to specify these options at this moment as the external backend is using communication via REST api
but all our documentation is using these options already as the internal backend will start using the REST api
soon as well.
String instead of enums in Sparkling Water Algo API¶
- In scala, setters of the pipeline wrappers for H2O algorithms now accepts strings in places where they accepted enum values before. Before, we called, for example:
import hex.genmodel.utils.DistributionFamily
val gbm = H2OGBM()
gbm.setDistribution(DistributionFamily.multinomial)
Now, the correct code is:
val gbm = H2OGBM()
gbm.setDistribution("multinomial")
which makes the Python and Scala APIs consistent. Both upper case and lower case values are valid and if a wrong input is entered, warning is printed out with correct possible values.
Switch to Java 1.8 on Spark 2.1¶
Sparkling Water for Spark 2.1 now requires Java 1.8 and higher.
DRF exposed into Sparkling Water Algorithm API¶
DRF is now exposed in the Sparkling Water. Please see our documentation to learn how to use it Train DRF Model in Sparkling Water.
Also we can run our Grid Search API on DRF.
Change Default Name of Prediction Column¶
The default name of the prediction column has been changed from prediction_output
to prediction
.
Single value in prediction column¶
The prediction column contains directly the predicted value. For example, before this change, the prediction column contained
another struct field called value
(in case of regression issue), which contained the value. From now on, the predicted value
is always stored directly in the prediction column. In case of regression issue, the predicted numeric value
and in case of classification, the predicted label. If you are interested in more details created during the prediction,
please make sure to set withDetailedPredictionCol
to true
via the setters on both PySparkling and Sparkling Water.
When enabled, additional column named detailed_prediction
is created which contains additional prediction details, such as
probabilities, contributions and so on.
In manual mode of external backend always require a specification of cluster location¶
In previous versions, H2O client was able to discover nodes using the multicast search. That is now removed and IP:Port of any node of external cluster to which we need to connect is required. This also means that in the users of multicast cloud up in case of external H2O backend in manual standalone (no Hadoop) mode now need to pass the flatfile argument external H2O. For more information, please see Manual Mode of External Backend without Hadoop (standalone).
Removal of Deprecated Methods and Classes¶
getColsampleBytree
andsetColsampleBytree
methods are removed from the XGBoost API. Please use the newgetColSampleByTree
andsetColSampleByTree
.- Removal of deprecated option
spark.ext.h2o.external.cluster.num.h2o.nodes
and corresponding setters. Please usespark.ext.h2o.external.cluster.size
or the corresponding settersetClusterSize
. - Removal of deprecated algorithm classes in package
org.apache.spark.h2o.ml.algos
. Please use the classes from the packageai.h2o.sparkling.ml.algos
. Their API remains the same as before. This is the beginning of moving Sparkling Water classes to our distinct packageai.h2o.sparkling
- Removal of deprecated option
spark.ext.h2o.external.read.confirmation.timeout
and related setters. This option is removed without a replacement as it is no longer needed. - Removal of deprecated parameter
SelectBestModelDecreasing
on the Grid Search API. Related getters and setters have been also removed. This method is removed without replacement as we now internally sort the models with the ordering meaningful to the specified sort metric. - TargetEncoder transformer now accepts the
outputCols
parameter which can be used to override the default output column names. - On PySparkling
H2OGLM
API, we removed deprecated parameteralpha
in favor ofalphaValue
andlambda_
in favor oflambdaValue
. On Both PySparkling and Sparkling WaterH2OGLM
API, we removed methodsgetAlpha
in favor ofgetAlphaValue
,getLambda
in favor ofgetLambdaValue
,setAlpha
in favor ofsetAlphaValue
andsetLambda
in favor ofsetLambdaValue
. These changes ensure the consistency across Python and Scala APIs. - In Sparkling Water
H2OConf
API, we removed methodh2oDriverIf
in favor ofexternalH2ODriverIf
andsetH2ODriverIf
in favor ofsetExternalH2ODriverIf
. In PySparklingH2OConf
API, we removed methodh2o_driver_if
in favor ofexternalH2ODriverIf
andset_h2o_driver_if
in favor ofsetExternalH2ODriverIf
. - On PySparkling
H2OConf
API, the methoduser_name
has been removed in favor of theuserName
method and methodset_user_name
had been removed in favor of thesetUserName
method. - The configurations
spark.ext.h2o.external.kill.on.unhealthy.interval
,spark.ext.h2o.external.health.check.interval
andspark.ext.h2o.ui.update.interval
have been removed and were replaced by a single optionspark.ext.h2o.backend.heartbeat.interval
. OnH2OConf
Scala API, the methodsbackendHeartbeatInterval
andsetBackendHeartbeatInterval
were added and the following methods were removed:uiUpdateInterval
,setUiUpdateInterval
,killOnUnhealthyClusterInterval
,setKillOnUnhealthyClusterInterval
,healthCheckInterval
andsetHealthCheckInterval
. OnH2OConf
Python API, the methodsbackendHeartbeatInterval
andsetBackendHeartbeatInterval
were added and the following methods were removed:ui_update_interval
,set_ui_update_interval
,kill_on_unhealthy_cluster_interval
,set_kill_on_unhealthy_cluster_interval
,get_health_check_interval
andset_health_check_interval
. The added methods are used to configure single interval which was previously specified by these 3 different methods. - The configuration
spark.ext.h2o.cluster.client.connect.timeout
is removed without replacement as it is no longer needed. onH2OConf
Scala API, the methodsclientConnectionTimeout
andsetClientConnectionTimeout
were removed and onH2OConf
Python API, the methodsset_client_connection_timeout
andset_client_connection_timeout
were removed.
Change of Versioning Scheme¶
Version of Sparkling Water is changed to the following pattern: H2OVersion-SWPatchVersion-SparkVersion
, where:
H2OVersion
is full H2O Version which is integrated to Sparkling Water. SWPatchVersion
is used to specify
a patch version and SparkVersion
is a Spark version. This change of scheme allows us to do releases of Sparkling Water
without the need of releasing H2O if there is only change on the Sparkling Water side. In that case, we just increment the
SWPatchVersion
. The new version therefore looks, for example, like 3.26.0.9-2-2.4
. This version tells us this
Sparkling Water is integrating H2O 3.26.0.9
, it is the second release with 3.26.0.9
version and is for Spark 2.4
.
Renamed Property for Passing Extra HTTP Headers for Flow UI¶
The configuration property spark.ext.h2o.client.flow.extra.http.headers
was renamed to
to spark.ext.h2o.flow.extra.http.headers
since Flow UI can also run on H2O nodes and the value of the property is
also propagated to H2O nodes since the major version 3.28.0.1-1
.
External Backend now keeps H2O Flow accessible on worker nodes¶
The option spark.ext.h2o.node.enable.web
does not have any effect anymore for automatic mode of external
backend as we required H2O Flow to be accessible on the worker nodes. The associated getters and setters do also
not have any effect in this case.
It is also required that the users of manual mode of external backend
keep REST api available on all worker nodes. In particular, the H2O option -disable_web
can’t be specified
when starting H2O.
Default Values of Some AutoML Parameters Have Changed¶
The default values of the following AutoML parameters have changed across all APIs.
From any previous version to 3.26.11¶
- Users of Sparkling Water external cluster in manual mode on Hadoop need to update the command the external cluster is launched with.
A new parameter
-sw_ext_backend
needs to be added to the h2odriver invocation.