Enabling LDAP¶
Sparkling Water can use LDAP for user authentication. You need to have login.conf
with the content similar to the one below:
ldaploginmodule {
ai.h2o.org.eclipse.jetty.plus.jaas.spi.LdapLoginModule required
debug="true"
useLdaps="false"
contextFactory="com.sun.jndi.ldap.LdapCtxFactory"
hostname="ldap.h2o.ai"
port="389"
bindDn="cn=admin,dc=h2o,dc=ai"
bindPassword="h2o"
authenticationMethod="simple"
forceBindingLogin="true"
userBaseDn="ou=users,dc=h2o,dc=ai";
};
This configuration file needs to be modified for your specific LDAP configuration.
Generally, to enable LDAP you need to set the following environmental properties:
spark.ext.h2o.ldap.login=true
spark.ext.h2o.login.conf=ldap.conf
spark.ext.h2o.user.name=username
where ldap.conf
is the configuration file for the LDAP connection and username is a username of your LDAP account
that will be used for authentication to the H2O-3 cluster.
Configuring LDAP in Scala¶
You can pass the required properties directly as Spark properties, such as:
./bin/sparkling-shell \
--conf spark.ext.h2o.ldap.login=true \
--conf spark.ext.h2o.login.conf=ldap.conf \
--conf spark.ext.h2o.user.name=username
And later, you can create H2OContext
as:
import org.apache.spark.h2o._
conf = new H2OConf(spark).setUserName("username").setPassword("password")
val hc = H2OContext.getOrCreate(spark)
Or, you can also use setters available on H2OConf
as:
import org.apache.spark.h2o._
val conf = new H2OConf(spark).setLoginConf("ldap.conf").setLdapLoginEnabled().setUserName("username").setPassword("password")
val hc = H2OContext.getOrCreate(spark, conf)
Later when accessing Flow, you will be asked for the username and password of the user you specified in the configuration property spark.ext.h2o.user.name or via the method setUserName.
Configuring LDAP in Python (PySparkling)¶
You can pass the required properties directly as Spark properties, such as:
./bin/pysparkling \
--conf spark.ext.h2o.ldap.login=true \
--conf spark.ext.h2o.login.conf=ldap.conf \
--conf spark.ext.h2o.user.name=username
And later, you can create H2OContext
as:
from pysparkling import *
conf = H2OConf(spark).setUserName("username").setPassword("password")
hc = H2OContext.getOrCreate(spark)
Or, you can also use setters available on H2OConf
as:
from pysparkling import *
conf = H2OConf(spark).set_login_conf("ldap.conf").set_ldap_login_enabled().setUserName("username").setPassword("password")
hc = H2OContext.getOrCreate(spark, conf)
You can see that in the case of PySparkling, you need to also specify the username and password as part of the H2OContext
call. This is required because you want to have the Python client authenticated as well.
Later when accessing Flow, you will be asked for the username and password of the user you specified in the configuration property spark.ext.h2o.user.name or via the method setUserName.