Train DRF Model in Sparkling Water¶
Sparkling Water provides API for H2O DRF in Scala and Python. The following sections describe how to train DRF model in Sparkling Water in both languages.
Scala
First, let’s start Sparkling Shell as
./bin/sparkling-shell
Start H2O cluster inside the Spark environment
import org.apache.spark.h2o._
import java.net.URI
val hc = H2OContext.getOrCreate()
Parse the data using H2O and convert them to Spark Frame
val frame = new H2OFrame(new URI("https://raw.githubusercontent.com/h2oai/sparkling-water/master/examples/smalldata/prostate/prostate.csv"))
val sparkDF = hc.asDataFrame(frame).withColumn("CAPSULE", $"CAPSULE" cast "string")
val Array(trainingDF, testingDF) = sparkDF.randomSplit(Array(0.8, 0.2))
Train the model. You can configure all the available DRF arguments using provided setters, such as the label column.
import ai.h2o.sparkling.ml.algos.H2ODRF
val estimator = new H2ODRF().setLabelCol("CAPSULE")
val model = estimator.fit(trainingDF)
You can also get raw model details by calling the getModelDetails() method available on the model as:
model.getModelDetails()
Run Predictions
model.transform(testingDF).show(false)
Python
First, let’s start PySparkling Shell as
./bin/pysparkling
Start H2O cluster inside the Spark environment
from pysparkling import *
hc = H2OContext.getOrCreate()
Parse the data using H2O and convert them to Spark Frame
import h2o
frame = h2o.import_file("https://raw.githubusercontent.com/h2oai/sparkling-water/master/examples/smalldata/prostate/prostate.csv")
sparkDF = hc.asSparkFrame(frame)
sparkDF = sparkDF.withColumn("CAPSULE", sparkDF.CAPSULE.cast("string"))
[trainingDF, testingDF] = sparkDF.randomSplit([0.8, 0.2])
Train the model. You can configure all the available DRF arguments using provided setters or constructor parameters, such as the label column.
from pysparkling.ml import H2ODRF
estimator = H2ODRF(labelCol = "CAPSULE")
model = estimator.fit(trainingDF)
You can also get raw model details by calling the getModelDetails() method available on the model as:
model.getModelDetails()
Run Predictions
model.transform(testingDF).show(truncate = False)