Importing MOJO Pipelines from Driverless AI¶
MOJO scoring pipeline artifacts, created in Driverless AI, can be used in Spark to carry out predictions in parallel using the Sparkling Water API. This section shows how to load and run predictions on the MOJO scoring pipeline in Sparkling Water.
Note: Sparkling Water is backward compatible with MOJO versions produced by different Driverless AI versions.
One advantage of scoring the MOJO artifacts is that H2OContext
does not have to be created if we only want to
run predictions on MOJOs using Spark. This is because the scoring is independent of the H2O run-time. It is also
important to mention that the format of prediction on MOJOs from Driverless AI differs from predictions on H2O-3 MOJOs.
The format of Driverless AI prediction is explained bellow.
Requirements¶
In order to use the MOJO scoring pipeline, Driverless AI license has to be passed to Spark.
This can be achieved via --jars
argument of the Spark launcher scripts.
Note: In Local Spark mode, please use --driver-class-path
to specify the path to the license file.
We also need Sparkling Water distribution which can be obtained from H2O Download page. After we downloaded the Sparkling Water distribution, extract it, and go to the extracted directory.
Loading and Score the MOJO¶
First, start the environment for the desired language with Driverless AI license. There are two variants. We can use Sparkling Water prepared scripts which put required dependencies on the Spark classpath or we can use Spark directly and add the dependencies manually.
Scala
./bin/spark-shell --jars license.sig,jars/sparkling-water-assembly_2.11-3.30.0.7-1-2.4-all.jar
./bin/sparkling-shell --jars license.sig
Python
./bin/pyspark --jars license.sig --py-files py/build/dist/h2o_pysparkling_2.4-3.30.0.7-1-2.4.zip
./bin/pysparkling --jars license.sig
At this point, we should have Spark interactive terminal where we can carry out predictions.
For productionalizing the scoring process, we can use the same configuration,
except instead of using Spark shell, we would submit the application using ./bin/spark-submit
.
Now Load the MOJO as:
Scala
import ai.h2o.sparkling.ml.models.H2OMOJOPipelineModel
val settings = H2OMOJOSettings(predictionCol = "fruit_type", convertUnknownCategoricalLevelsToNa = true)
val mojo = H2OMOJOPipelineModel.createFromMojo("file:///path/to/the/pipeline_mojo.zip", settings)
Python
from pysparkling.ml import H2OMOJOPipelineModel
settings = H2OMOJOSettings(predictionCol = "fruit_type", convertUnknownCategoricalLevelsToNa = True)
mojo = H2OMOJOPipelineModel.createFromMojo("file:///path/to/the/pipeline_mojo.zip", settings)
In the examples above settings
is an optional argument. If it’s not specified, the default values are used.
Prepare the dataset to score on:
Scala
val dataFrame = spark.read.option("header", "true").option("inferSchema", "true").csv("file:///path/to/the/data.csv")
Python
dataFrame = spark.read.option("header", "true").option("inferSchema", "true").csv("file:///path/to/the/data.csv")
And finally, score the mojo on the loaded dataset:
Scala
val predictions = mojo.transform(dataFrame)
Python
predictions = mojo.transform(dataFrame)
We can select the predictions as:
Scala
predictions.select("prediction")
Python
predictions.select("prediction")
The output data frame contains all the original columns plus the prediction column which is by default named
prediction
. The prediction column contains all the prediction detail. Its name can be modified via the H2OMOJOSettings
object.
Predictions Format¶
When the option namedMojoOutputColumns
is enabled on H2OMOJOSettings
, the predictionCol
contains sub-columns with
names corresponding to the columns Driverless AI identified as output columns. For example, if Driverless API MOJO
pipeline contains one output column AGE ( for example regression problem), the prediction column contains another sub-column
named AGE. If The MOJO pipeline contains multiple output columns, such as VALID.0 and VALID.1 (for example classification problems),
the prediction column contains two sub-columns with the aforementined names.
If this option is disabled, the predictionCol
contains the array of predictions without
the column names. For example, if Driverless API MOJO pipeline contains one output column AGE ( for example regression problem),
the prediction column contains array of size 1 with the predicted value.
If The MOJO pipeline contains multiple output columns, such as VALID.0 and VALID.1 (for example classification problems),
the prediction column contains array of size 2 containing predicted probabilities for each class.
By default, this option is enabled.
Customizing the MOJO Settings¶
We can configure the output and format of predictions via the H2OMOJOSettings. The available options are
predictionCol
- Specifies the name of the generated prediction column. The default value is prediction.convertUnknownCategoricalLevelsToNa
- Enables or disables conversion of unseen categoricals to NAs. By default, it is disabled.convertInvalidNumbersToNa
- Enables or disables conversion of invalid numbers to NAs. By default, it is disabled.namedMojoOutputColumns
- Enables or disables named output columns. By default, it is enabled.
Troubleshooting¶
If you see the following exception during loading the MOJO pipeline:
java.io.IOException: MOJO doesn't contain resource mojo/pipeline.pb
, then it means you are adding
incompatible mojo-runtime.jar on your classpath. It is not required and also not suggested
to put the JAR on the classpath as Sparkling Water already bundles the correct dependencies.