Integration Tests¶
This section describes integration tests that are part of the Sparkling Water project.
The tests are performed for both Sparkling Water backend types (internal and external). Please see Sparkling Water Backends for more information about the backends.
Testing Environments¶
- Local - corresponds to setting Spark - MASTERvariable to one of- local, or- local[*], or- local-cluster[_,_,_](- local-clustermode is just for testing purposes) values
- Standalone cluster - the - MASTERvariable points to existing standalone Spark cluster- spark://...
- YARN cluster - the - MASTERvariable contains- yarn-clientor- yarn-clustervalues
Testing Scenarios¶
- Initialize H2O on top of Spark by running - H2OContext.getOrCreate()and verifying that H2O was properly initialized.
- Load data with help from the H2O API from various data sources: 
local disk
HDFS
S3N
- Convert from - RDD[T]to- H2OFrame.
- Convert from - DataFrameto- H2OFrame.
- Convert from - H2OFrameto- RDD.
- Convert from - H2OFrameto- DataFrame.
- Integrate with H2O Algorithms using RDD as algorithm input. 
- Integrate with MLlib Algorithms using H2OFrame as algorithm input (KMeans). 
- Integrate with MLlib pipelines. 
Integration Tests Example¶
The following code reflects the use cases listed above. The code is executed in all testing environments (if applicable). Spark 2.0+ is required:
local
standalone cluster
YARN
- Initialize H2O: 
import org.apache.spark.sql.SparkSession val spark = SparkSession.builder().getOrCreate() import ai.h2o.sparkling._ val h2oContext = H2OContext.getOrCreate() import h2oContext.implicits._
- Load data: 
From the local disk:
import org.apache.spark.sql.SparkSession val spark = SparkSession.builder().getOrCreate() import ai.h2o.sparkling._ val h2oContext = H2OContext.getOrCreate() import java.io.File val df: H2OFrame = H2OFrame(new File("examples/smalldata/airlines/allyears2k_headers.csv"))Note: The file must be present on all nodes. Specifically, in the case of the Sparkling Water internal backend, this must be present on all nodes with Spark. In the case of the Sparkling Water external backend, this must be present on all nodes with H2O.
From HDFS:
import org.apache.spark.sql.SparkSession val spark = SparkSession.builder().getOrCreate() import ai.h2o.sparkling._ val h2oContext = H2OContext.getOrCreate() val path = "hdfs://mr-0xd6.0xdata.loc/datasets/airlines_all.csv" val uri = new java.net.URI(path) val airlinesHF = H2OFrame(uri)
From S3N:
import org.apache.spark.sql.SparkSession val spark = SparkSession.builder().getOrCreate() import ai.h2o.sparkling._ val h2oContext = H2OContext.getOrCreate() val path = "s3n://h2o-airlines-unpacked/allyears2k.csv" val uri = new java.net.URI(path) val airlinesHF = H2OFrame(uri)Note: Spark/H2O needs to know the AWS credentials specified in
core-site.xml. The credentials are passed viaHADOOP_CONF_DIR, which points to a configuration directory withcore-site.xml.
- Convert from - RDD[T]to- H2OFrame:
import org.apache.spark.sql.SparkSession val spark = SparkSession.builder().getOrCreate() import ai.h2o.sparkling._ val h2oContext = H2OContext.getOrCreate() val rdd = sc.parallelize(1 to 1000, 100).map( v => IntHolder(Some(v))) val hf: H2OFrame = h2oContext.asH2OFrame(rdd)
- Convert from - DataFrameto- H2OFrame:
import org.apache.spark.sql.SparkSession val spark = SparkSession.builder().getOrCreate() import ai.h2o.sparkling._ val h2oContext = H2OContext.getOrCreate() import spark.implicits._ val df = spark.sparkContext.parallelize(1 to 1000, 100).map(v => IntHolder(Some(v))).toDF val hf = h2oContext.asH2OFrame(df)
- Convert from - H2OFrameto- RDD[T]:
import org.apache.spark.sql.SparkSession val spark = SparkSession.builder().getOrCreate() import ai.h2o.sparkling._ val h2oContext = H2OContext.getOrCreate() val rdd = spark.sparkContext.parallelize(1 to 1000, 100).map(v => IntHolder(Some(v))) val hf: H2OFrame = h2oContext.asH2OFrame(rdd) val newRdd = h2oContext.asRDD[IntHolder](hf)
- Convert from - H2OFrameto- DataFrame:
import org.apache.spark.sql.SparkSession val spark = SparkSession.builder().getOrCreate() import ai.h2o.sparkling._ val h2oContext = H2OContext.getOrCreate() import spark.implicits._ val df = spark.sparkContext.parallelize(1 to 1000, 100).map(v => IntHolder(Some(v))).toDF val hf = h2oContext.asH2OFrame(df) val newRdd = h2oContext.asSparkFrame(hf)