Parameters of H2OStackedEnsemble¶
Affected Class¶
ai.h2o.sparkling.ml.algos.H2OStackedEnsemble
Parameters¶
Each parameter has also a corresponding getter and setter method. (E.g.:
label
->getLabel()
,setLabel(...)
)
- baseAlgorithms
An array of base algorithms
Scala default value:
null
; Python default value:None
- blendingDataFrame
This parameter is used for computing the predictions that serve as the training frame for the meta-learner. If provided, this triggers blending mode on the stacked ensemble training stage. Blending mode is faster than cross-validating the base learners (though these ensembles may not perform as well as the Super Learner ensemble). The parameter is not serializable!
Scala default value:
null
; Python default value:None
- aucType
Set default multinomial AUC type. Possible values are
"AUTO"
,"NONE"
,"MACRO_OVR"
,"WEIGHTED_OVR"
,"MACRO_OVO"
,"WEIGHTED_OVO"
.Default value:
"AUTO"
Also available on the trained model.
- categoricalEncoding
Encoding scheme for categorical features. Possible values are
"AUTO"
,"OneHotInternal"
,"OneHotExplicit"
,"Enum"
,"Binary"
,"Eigen"
,"LabelEncoder"
,"SortByResponse"
,"EnumLimited"
.Default value:
"AUTO"
Also available on the trained model.
- checkpoint
Model checkpoint to resume training with.
Scala default value:
null
; Python default value:None
Also available on the trained model.
- columnsToCategorical
List of columns to convert to categorical before modelling
Scala default value:
Array()
; Python default value:[]
- convertInvalidNumbersToNa
If set to ‘true’, the model converts invalid numbers to NA during making predictions.
Scala default value:
false
; Python default value:False
Also available on the trained model.
- convertUnknownCategoricalLevelsToNa
If set to ‘true’, the model converts unknown categorical levels to NA during making predictions.
Scala default value:
false
; Python default value:False
Also available on the trained model.
- customDistributionFunc
Reference to custom distribution, format: language:keyName=funcName.
Scala default value:
null
; Python default value:None
Also available on the trained model.
- customMetricFunc
Reference to custom evaluation function, format: language:keyName=funcName.
Scala default value:
null
; Python default value:None
Also available on the trained model.
- dataFrameSerializer
A full name of a serializer used for serialization and deserialization of Spark DataFrames to a JSON value within NullableDataFrameParam.
Default value:
"ai.h2o.sparkling.utils.JSONDataFrameSerializer"
Also available on the trained model.
- detailedPredictionCol
Column containing additional prediction details, its content depends on the model type.
Default value:
"detailed_prediction"
Also available on the trained model.
- distribution
Distribution function. Possible values are
"AUTO"
,"bernoulli"
,"quasibinomial"
,"modified_huber"
,"multinomial"
,"ordinal"
,"gaussian"
,"poisson"
,"gamma"
,"tweedie"
,"huber"
,"laplace"
,"quantile"
,"fractionalbinomial"
,"negativebinomial"
,"custom"
.Default value:
"AUTO"
Also available on the trained model.
- exportCheckpointsDir
Automatically export generated models to this directory.
Scala default value:
null
; Python default value:None
Also available on the trained model.
- featuresCols
Name of feature columns
Scala default value:
Array()
; Python default value:[]
Also available on the trained model.
- foldAssignment
Cross-validation fold assignment scheme, if fold_column is not specified. The ‘Stratified’ option will stratify the folds based on the response variable, for classification problems. Possible values are
"AUTO"
,"Random"
,"Modulo"
,"Stratified"
.Default value:
"AUTO"
Also available on the trained model.
- foldCol
Column with cross-validation fold index assignment per observation.
Scala default value:
null
; Python default value:None
Also available on the trained model.
- gainsliftBins
Gains/Lift table number of bins. 0 means disabled.. Default value -1 means automatic binning.
Default value:
-1
Also available on the trained model.
- huberAlpha
Desired quantile for Huber/M-regression (threshold between quadratic and linear loss, must be between 0 and 1).
Default value:
0.9
Also available on the trained model.
- ignoreConstCols
Ignore constant columns.
Scala default value:
true
; Python default value:True
Also available on the trained model.
- ignoredCols
Names of columns to ignore for training.
Scala default value:
null
; Python default value:None
Also available on the trained model.
- keepBinaryModels
If set to true, all binary models created during execution of the
fit
method will be kept in DKV of H2O-3 cluster.Scala default value:
false
; Python default value:False
- keepCrossValidationFoldAssignment
Whether to keep the cross-validation fold assignment.
Scala default value:
false
; Python default value:False
Also available on the trained model.
- keepCrossValidationModels
Whether to keep the cross-validation models.
Scala default value:
true
; Python default value:True
Also available on the trained model.
- keepCrossValidationPredictions
Whether to keep the predictions of the cross-validation models.
Scala default value:
false
; Python default value:False
Also available on the trained model.
- keepLeveloneFrame
Keep level one frame used for metalearner training.
Scala default value:
false
; Python default value:False
Also available on the trained model.
- labelCol
Response variable column.
Scala default value:
null
; Python default value:None
Also available on the trained model.
- maxCategoricalLevels
For every categorical feature, only use this many most frequent categorical levels for model training. Only used for categorical_encoding == EnumLimited.
Default value:
10
Also available on the trained model.
- maxRuntimeSecs
Maximum allowed runtime in seconds for model training. Use 0 to disable.
Default value:
0.0
Also available on the trained model.
- metalearnerAlgorithm
Type of algorithm to use as the metalearner. Options include ‘AUTO’ (GLM with non negative weights; if validation_frame is present, a lambda search is performed), ‘deeplearning’ (Deep Learning with default parameters), ‘drf’ (Random Forest with default parameters), ‘gbm’ (GBM with default parameters), ‘glm’ (GLM with default parameters), ‘naivebayes’ (NaiveBayes with default parameters), or ‘xgboost’ (if available, XGBoost with default parameters). Possible values are
"AUTO"
,"deeplearning"
,"drf"
,"gbm"
,"glm"
,"naivebayes"
,"xgboost"
.Default value:
"AUTO"
Also available on the trained model.
- metalearnerFoldAssignment
Cross-validation fold assignment scheme for metalearner cross-validation. Defaults to AUTO (which is currently set to Random). The ‘Stratified’ option will stratify the folds based on the response variable, for classification problems. Possible values are
"AUTO"
,"Random"
,"Modulo"
,"Stratified"
.Default value:
"AUTO"
Also available on the trained model.
- metalearnerFoldCol
Column with cross-validation fold index assignment per observation for cross-validation of the metalearner.
Scala default value:
null
; Python default value:None
Also available on the trained model.
- metalearnerNfolds
Number of folds for K-fold cross-validation of the metalearner algorithm (0 to disable or >= 2).
Default value:
0
Also available on the trained model.
- metalearnerParams
Parameters for metalearner algorithm.
Default value:
""
Also available on the trained model.
- metalearnerTransform
Transformation used for the level one frame. Possible values are
"NONE"
,"Logit"
.Default value:
"NONE"
Also available on the trained model.
- modelId
Destination id for this model; auto-generated if not specified.
Scala default value:
null
; Python default value:None
- nfolds
Number of folds for K-fold cross-validation (0 to disable or >= 2).
Default value:
0
Also available on the trained model.
- offsetCol
Offset column. This will be added to the combination of columns before applying the link function.
Scala default value:
null
; Python default value:None
Also available on the trained model.
- parallelizeCrossValidation
Allow parallel training of cross-validation models.
Scala default value:
true
; Python default value:True
- predictionCol
Prediction column name
Default value:
"prediction"
Also available on the trained model.
- quantileAlpha
Desired quantile for Quantile regression, must be between 0 and 1.
Default value:
0.5
Also available on the trained model.
- scoreEachIteration
Whether to score during each iteration of model training.
Scala default value:
false
; Python default value:False
Also available on the trained model.
- scoreTrainingSamples
Specify the number of training set samples for scoring. The value must be >= 0. To use all training samples, enter 0.
Scala default value:
10000L
; Python default value:10000
Also available on the trained model.
- seed
Seed for random numbers; passed through to the metalearner algorithm. Defaults to -1 (time-based random number).
Scala default value:
-1L
; Python default value:-1
Also available on the trained model.
- splitRatio
Accepts values in range [0, 1.0] which determine how large part of dataset is used for training and for validation. For example, 0.8 -> 80% training 20% validation. This parameter is ignored when validationDataFrame is set.
Default value:
1.0
- stoppingMetric
Metric to use for early stopping (AUTO: logloss for classification, deviance for regression and anomaly_score for Isolation Forest). Note that custom and custom_increasing can only be used in GBM and DRF with the Python client. Possible values are
"AUTO"
,"deviance"
,"logloss"
,"MSE"
,"RMSE"
,"MAE"
,"RMSLE"
,"AUC"
,"AUCPR"
,"lift_top_group"
,"misclassification"
,"mean_per_class_error"
,"anomaly_score"
,"custom"
,"custom_increasing"
.Default value:
"AUTO"
Also available on the trained model.
- stoppingRounds
Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable).
Default value:
0
Also available on the trained model.
- stoppingTolerance
Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much).
Default value:
0.001
Also available on the trained model.
- tweediePower
Tweedie power for Tweedie regression, must be between 1 and 2.
Default value:
1.5
Also available on the trained model.
- validationDataFrame
A data frame dedicated for a validation of the trained model. If the parameters is not set,a validation frame created via the ‘splitRatio’ parameter. The parameter is not serializable!
Scala default value:
null
; Python default value:None
- weightCol
Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. This is typically the number of times a row is repeated, but non-integer values are supported as well. During training, rows with higher weights matter more, due to the larger loss function pre-factor. If you set weight = 0 for a row, the returned prediction frame at that row is zero and this is incorrect. To get an accurate prediction, remove all rows with weight == 0.
Scala default value:
null
; Python default value:None
Also available on the trained model.
- withContributions
Enables or disables generating a sub-column of detailedPredictionCol containing Shapley values of original features.
Scala default value:
false
; Python default value:False
Also available on the trained model.
- withLeafNodeAssignments
Enables or disables computation of leaf node assignments.
Scala default value:
false
; Python default value:False
Also available on the trained model.
- withStageResults
Enables or disables computation of stage results.
Scala default value:
false
; Python default value:False
Also available on the trained model.