Parameters of H2ORuleFit¶
Affected Classes¶
- ai.h2o.sparkling.ml.algos.H2ORuleFit
- ai.h2o.sparkling.ml.algos.classification.H2ORuleFitClassifier
- ai.h2o.sparkling.ml.algos.regression.H2ORuleFitRegressor
Parameters¶
- Each parameter has also a corresponding getter and setter method. (E.g.: - label->- getLabel(),- setLabel(...))
- ignoredCols
- Names of columns to ignore for training. - Scala default value: - null; Python default value:- None- Also available on the trained model. 
- algorithm
- The algorithm to use to generate rules. Possible values are - "DRF",- "GBM",- "AUTO".- Default value: - "AUTO"- Also available on the trained model. 
- aucType
- Set default multinomial AUC type. Possible values are - "AUTO",- "NONE",- "MACRO_OVR",- "WEIGHTED_OVR",- "MACRO_OVO",- "WEIGHTED_OVO".- Default value: - "AUTO"- Also available on the trained model. 
- columnsToCategorical
- List of columns to convert to categorical before modelling - Scala default value: - Array(); Python default value:- []
- convertInvalidNumbersToNa
- If set to ‘true’, the model converts invalid numbers to NA during making predictions. - Scala default value: - false; Python default value:- False- Also available on the trained model. 
- convertUnknownCategoricalLevelsToNa
- If set to ‘true’, the model converts unknown categorical levels to NA during making predictions. - Scala default value: - false; Python default value:- False- Also available on the trained model. 
- dataFrameSerializer
- A full name of a serializer used for serialization and deserialization of Spark DataFrames to a JSON value within NullableDataFrameParam. - Default value: - "ai.h2o.sparkling.utils.JSONDataFrameSerializer"- Also available on the trained model. 
- detailedPredictionCol
- Column containing additional prediction details, its content depends on the model type. - Default value: - "detailed_prediction"- Also available on the trained model. 
- distribution
- Distribution function. Possible values are - "AUTO",- "bernoulli",- "quasibinomial",- "modified_huber",- "multinomial",- "ordinal",- "gaussian",- "poisson",- "gamma",- "tweedie",- "huber",- "laplace",- "quantile",- "fractionalbinomial",- "negativebinomial",- "custom".- Default value: - "AUTO"- Also available on the trained model. 
- featuresCols
- Name of feature columns - Scala default value: - Array(); Python default value:- []- Also available on the trained model. 
- keepBinaryModels
- If set to true, all binary models created during execution of the - fitmethod will be kept in DKV of H2O-3 cluster.- Scala default value: - false; Python default value:- False
- labelCol
- Response variable column. - Default value: - "label"- Also available on the trained model. 
- lambdaValue
- Lambda for LASSO regressor. - Scala default value: - null; Python default value:- None- Also available on the trained model. 
- maxCategoricalLevels
- For every categorical feature, only use this many most frequent categorical levels for model training. Only used for categorical_encoding == EnumLimited. - Default value: - 10- Also available on the trained model. 
- maxNumRules
- The maximum number of rules to return. defaults to -1 which means the number of rules is selectedby diminishing returns in model deviance. - Default value: - -1- Also available on the trained model. 
- maxRuleLength
- Maximum length of rules. Defaults to 3. - Default value: - 3- Also available on the trained model. 
- minRuleLength
- Minimum length of rules. Defaults to 3. - Default value: - 3- Also available on the trained model. 
- modelId
- Destination id for this model; auto-generated if not specified. - Scala default value: - null; Python default value:- None
- modelType
- Specifies type of base learners in the ensemble. Possible values are - "RULES",- "RULES_AND_LINEAR",- "LINEAR".- Default value: - "RULES_AND_LINEAR"- Also available on the trained model. 
- predictionCol
- Prediction column name - Default value: - "prediction"- Also available on the trained model. 
- removeDuplicates
- Whether to remove rules which are identical to an earlier rule. Defaults to true. - Scala default value: - true; Python default value:- True- Also available on the trained model. 
- ruleGenerationNtrees
- Specifies the number of trees to build in the tree model. Defaults to 50. - Default value: - 50- Also available on the trained model. 
- seed
- Seed for pseudo random number generator (if applicable). - Scala default value: - -1L; Python default value:- -1- Also available on the trained model. 
- splitRatio
- Accepts values in range [0, 1.0] which determine how large part of dataset is used for training and for validation. For example, 0.8 -> 80% training 20% validation. This parameter is ignored when validationDataFrame is set. - Default value: - 1.0
- validationDataFrame
- A data frame dedicated for a validation of the trained model. If the parameters is not set,a validation frame created via the ‘splitRatio’ parameter. The parameter is not serializable! - Scala default value: - null; Python default value:- None
- weightCol
- Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data frame. This is typically the number of times a row is repeated, but non-integer values are supported as well. During training, rows with higher weights matter more, due to the larger loss function pre-factor. If you set weight = 0 for a row, the returned prediction frame at that row is zero and this is incorrect. To get an accurate prediction, remove all rows with weight == 0. - Scala default value: - null; Python default value:- None- Also available on the trained model. 
- withContributions
- Enables or disables generating a sub-column of detailedPredictionCol containing Shapley values of original features. - Scala default value: - false; Python default value:- False- Also available on the trained model. 
- withLeafNodeAssignments
- Enables or disables computation of leaf node assignments. - Scala default value: - false; Python default value:- False- Also available on the trained model. 
- withStageResults
- Enables or disables computation of stage results. - Scala default value: - false; Python default value:- False- Also available on the trained model.