H2ORegressionMetrics Class

The class makes available all metrics that shared across all algorithms supporting regression.

Getter Methods

getCustomMetricName()

Returns: Name of custom metric.

Scala type: String, Python type: string, R type: character

getCustomMetricValue()

Returns: Value of custom metric.

Scala type: Double, Python type: float, R type: numeric

getDataFrameSerializer()

Returns: A full name of a serializer used for serialization and deserialization of Spark DataFrames to a JSON value within NullableDataFrameParam.

Scala type: String, Python type: string, R type: character

getDescription()

Returns: Optional description for this scoring run (to note out-of-bag, sampled data, etc.).

Scala type: String, Python type: string, R type: character

getMAE()

Returns: The mean absolute error for this scoring run.

Scala type: Double, Python type: float, R type: numeric

getMeanResidualDeviance()

Returns: The mean residual deviance for this scoring run.

Scala type: Double, Python type: float, R type: numeric

getMSE()

Returns: The Mean Squared Error of the prediction for this scoring run.

Scala type: Double, Python type: float, R type: numeric

getNobs()

Returns: Number of observations.

Scala type: Long, Python type: int, R type: integer

getR2()

Returns: The R^2 for this scoring run.

Scala type: Double, Python type: float, R type: numeric

getRMSE()

Returns: The Root Mean Squared Error of the prediction for this scoring run.

Scala type: Double, Python type: float, R type: numeric

getRMSLE()

Returns: The root mean squared log error for this scoring run.

Scala type: Double, Python type: float, R type: numeric

getScoringTime()

Returns: The time in mS since the epoch for the start of this scoring run.

Scala type: Long, Python type: int, R type: integer