Train GAM Model in Sparkling Water¶
Sparkling Water provides API for H2O GAM in Scala and Python. The following sections describe how to train the GAM model in Sparkling Water in both languages.
- Scala
- Python
First, let’s start Sparkling Shell as
./bin/sparkling-shell
Start H2O cluster inside the Spark environment
import ai.h2o.sparkling._
import java.net.URI
val hc = H2OContext.getOrCreate()
Parse the data using H2O and convert them to Spark Frame
import org.apache.spark.SparkFiles
spark.sparkContext.addFile("https://raw.githubusercontent.com/h2oai/sparkling-water/master/examples/smalldata/prostate/prostate.csv")
val rawSparkDF = spark.read.option("header", "true").option("inferSchema", "true").csv(SparkFiles.get("prostate.csv"))
val sparkDF = rawSparkDF.withColumn("CAPSULE", $"CAPSULE" cast "string")
val Array(trainingDF, testingDF) = sparkDF.randomSplit(Array(0.8, 0.2))
Train the model. You can configure all the available GAM arguments using provided setters, such as the label column and gam columns, which are mandatory.
import ai.h2o.sparkling.ml.algos.H2OGAM
val estimator = new H2OGAM().setLabelCol("CAPSULE").setGamCols(Array(Array("PSA", "DCAPS"), Array("AGE")))
val model = estimator.fit(trainingDF)
By default, the H2OGAM
algorithm distinguishes between a classification and regression problem based on the type of
the label column of the training dataset. If the label column is a string column, a classification model will be trained.
If the label column is a numeric column, a regression model will be trained. If you don’t want to be worried about
column data types, you can explicitly identify the problem by using ai.h2o.sparkling.ml.algos.classification.H2OGAMClassifier
or ai.h2o.sparkling.ml.algos.regression.H2OGAMRegressor
instead.
You can also get raw model details by calling the getModelDetails() method available on the model as:
model.getModelDetails()
Run Predictions
model.transform(testingDF).show(false)