Parameters of H2OExtendedIsolationForest¶
Affected Class¶
- ai.h2o.sparkling.ml.algos.H2OExtendedIsolationForest
Parameters¶
- Each parameter has also a corresponding getter and setter method. (E.g.: - label->- getLabel(),- setLabel(...))
- ignoredCols
- Names of columns to ignore for training. - Scala default value: - null; Python default value:- None- Also available on the trained model. 
- categoricalEncoding
- Encoding scheme for categorical features. Possible values are - "AUTO",- "OneHotInternal",- "OneHotExplicit",- "Enum",- "Binary",- "Eigen",- "LabelEncoder",- "SortByResponse",- "EnumLimited".- Default value: - "AUTO"- Also available on the trained model. 
- columnsToCategorical
- List of columns to convert to categorical before modelling - Scala default value: - Array(); Python default value:- []
- convertInvalidNumbersToNa
- If set to ‘true’, the model converts invalid numbers to NA during making predictions. - Scala default value: - false; Python default value:- False- Also available on the trained model. 
- convertUnknownCategoricalLevelsToNa
- If set to ‘true’, the model converts unknown categorical levels to NA during making predictions. - Scala default value: - false; Python default value:- False- Also available on the trained model. 
- dataFrameSerializer
- A full name of a serializer used for serialization and deserialization of Spark DataFrames to a JSON value within NullableDataFrameParam. - Default value: - "ai.h2o.sparkling.utils.JSONDataFrameSerializer"- Also available on the trained model. 
- detailedPredictionCol
- Column containing additional prediction details, its content depends on the model type. - Default value: - "detailed_prediction"- Also available on the trained model. 
- extensionLevel
- Maximum is N - 1 (N = numCols). Minimum is 0. Extended Isolation Forest with extension_Level = 0 behaves like Isolation Forest. - Default value: - 0- Also available on the trained model. 
- featuresCols
- Name of feature columns - Scala default value: - Array(); Python default value:- []- Also available on the trained model. 
- ignoreConstCols
- Ignore constant columns. - Scala default value: - true; Python default value:- True- Also available on the trained model. 
- keepBinaryModels
- If set to true, all binary models created during execution of the - fitmethod will be kept in DKV of H2O-3 cluster.- Scala default value: - false; Python default value:- False
- modelId
- Destination id for this model; auto-generated if not specified. - Scala default value: - null; Python default value:- None
- namedMojoOutputColumns
- Mojo Output is not stored in the array but in the properly named columns - Scala default value: - true; Python default value:- True- Also available on the trained model. 
- ntrees
- Number of Extended Isolation Forest trees. - Default value: - 100- Also available on the trained model. 
- predictionCol
- Prediction column name - Default value: - "prediction"- Also available on the trained model. 
- sampleSize
- Number of randomly sampled observations used to train each Extended Isolation Forest tree. - Default value: - 256- Also available on the trained model. 
- seed
- Seed for pseudo random number generator (if applicable). - Scala default value: - -1L; Python default value:- -1- Also available on the trained model. 
- splitRatio
- Accepts values in range [0, 1.0] which determine how large part of dataset is used for training and for validation. For example, 0.8 -> 80% training 20% validation. This parameter is ignored when validationDataFrame is set. - Default value: - 1.0
- validationDataFrame
- A data frame dedicated for a validation of the trained model. If the parameters is not set,a validation frame created via the ‘splitRatio’ parameter. The parameter is not serializable! - Scala default value: - null; Python default value:- None
- withContributions
- Enables or disables generating a sub-column of detailedPredictionCol containing Shapley values of original features. - Scala default value: - false; Python default value:- False- Also available on the trained model. 
- withLeafNodeAssignments
- Enables or disables computation of leaf node assignments. - Scala default value: - false; Python default value:- False- Also available on the trained model. 
- withStageResults
- Enables or disables computation of stage results. - Scala default value: - false; Python default value:- False- Also available on the trained model.