Parameters of H2OGLRM¶
Affected Class¶
- ai.h2o.sparkling.ml.features.H2OGLRM
Parameters¶
- Each parameter has also a corresponding getter and setter method. (E.g.: - label->- getLabel(),- setLabel(...))
- maxScoringIterations
- The maximum number of iterations used in MOJO scoring to update X - Default value: - 100- Also available on the trained model. 
- reconstructedCol
- Reconstructed column name. This column contains reconstructed input values (A_hat=X*Y instead of just X). - Default value: - "H2OGLRM_7b7e1386753f__reconstructed"- Also available on the trained model. 
- withReconstructedCol
- A flag identifying whether a column with reconstructed input values will be produced or not. - Scala default value: - false; Python default value:- False- Also available on the trained model. 
- lossByColNames
- Columns names for which loss function will be overridden by the ‘lossByCol’ parameter - Scala default value: - null; Python default value:- None
- outputCol
- Output column name - Default value: - "H2OGLRM_7b7e1386753f__output"- Also available on the trained model. 
- userX
- User-specified initial matrix X. - Scala default value: - null; Python default value:- None
- userY
- User-specified initial matrix Y. - Scala default value: - null; Python default value:- None
- columnsToCategorical
- List of columns to convert to categorical before modelling - Scala default value: - Array(); Python default value:- []
- convertInvalidNumbersToNa
- If set to ‘true’, the model converts invalid numbers to NA during making predictions. - Scala default value: - false; Python default value:- False- Also available on the trained model. 
- convertUnknownCategoricalLevelsToNa
- If set to ‘true’, the model converts unknown categorical levels to NA during making predictions. - Scala default value: - false; Python default value:- False- Also available on the trained model. 
- dataFrameSerializer
- A full name of a serializer used for serialization and deserialization of Spark DataFrames to a JSON value within NullableDataFrameParam. - Default value: - "ai.h2o.sparkling.utils.JSONDataFrameSerializer"- Also available on the trained model. 
- expandUserY
- Expand categorical columns in user-specified initial Y. - Scala default value: - true; Python default value:- True- Also available on the trained model. 
- exportCheckpointsDir
- Automatically export generated models to this directory. - Scala default value: - null; Python default value:- None- Also available on the trained model. 
- gammaX
- Regularization weight on X matrix. - Default value: - 0.0- Also available on the trained model. 
- gammaY
- Regularization weight on Y matrix. - Default value: - 0.0- Also available on the trained model. 
- ignoreConstCols
- Ignore constant columns. - Scala default value: - true; Python default value:- True- Also available on the trained model. 
- ignoredCols
- Names of columns to ignore for training. - Scala default value: - null; Python default value:- None- Also available on the trained model. 
- imputeOriginal
- Reconstruct original training data by reversing transform. - Scala default value: - false; Python default value:- False- Also available on the trained model. 
- init
- Initialization mode. Possible values are - "Random",- "SVD",- "PlusPlus",- "User",- "Power".- Default value: - "PlusPlus"- Also available on the trained model. 
- initStepSize
- Initial step size. - Default value: - 1.0- Also available on the trained model. 
- inputCols
- The array of input columns - Scala default value: - Array(); Python default value:- []- Also available on the trained model. 
- k
- Rank of matrix approximation. - Default value: - 1- Also available on the trained model. 
- keepBinaryModels
- If set to true, all binary models created during execution of the - fitmethod will be kept in DKV of H2O-3 cluster.- Scala default value: - false; Python default value:- False
- loadingName
- [Deprecated] Use representation_name instead. Frame key to save resulting X. - Scala default value: - null; Python default value:- None- Also available on the trained model. 
- loss
- Numeric loss function. Possible values are - "Quadratic",- "Absolute",- "Huber",- "Poisson",- "Periodic(0)",- "Logistic",- "Hinge",- "Categorical",- "Ordinal".- Default value: - "Quadratic"- Also available on the trained model. 
- lossByCol
- Loss function by column (override). Possible values are - "Quadratic",- "Absolute",- "Huber",- "Poisson",- "Periodic(0)",- "Logistic",- "Hinge",- "Categorical",- "Ordinal".- Scala default value: - null; Python default value:- None- Also available on the trained model. 
- maxIterations
- Maximum number of iterations. - Default value: - 1000- Also available on the trained model. 
- maxRuntimeSecs
- Maximum allowed runtime in seconds for model training. Use 0 to disable. - Default value: - 0.0- Also available on the trained model. 
- maxUpdates
- Maximum number of updates, defaults to 2*max_iterations. - Default value: - 2000- Also available on the trained model. 
- minStepSize
- Minimum step size. - Scala default value: - 1.0e-4; Python default value:- 1.0E-4- Also available on the trained model. 
- modelId
- Destination id for this model; auto-generated if not specified. - Scala default value: - null; Python default value:- None
- multiLoss
- Categorical loss function. Possible values are - "Quadratic",- "Absolute",- "Huber",- "Poisson",- "Periodic(0)",- "Logistic",- "Hinge",- "Categorical",- "Ordinal".- Default value: - "Categorical"- Also available on the trained model. 
- period
- Length of period (only used with periodic loss function). - Default value: - 1- Also available on the trained model. 
- recoverSvd
- Recover singular values and eigenvectors of XY. - Scala default value: - false; Python default value:- False- Also available on the trained model. 
- regularizationX
- Regularization function for X matrix. Possible values are - "None",- "Quadratic",- "L2",- "L1",- "NonNegative",- "OneSparse",- "UnitOneSparse",- "Simplex".- Default value: - "None"- Also available on the trained model. 
- regularizationY
- Regularization function for Y matrix. Possible values are - "None",- "Quadratic",- "L2",- "L1",- "NonNegative",- "OneSparse",- "UnitOneSparse",- "Simplex".- Default value: - "None"- Also available on the trained model. 
- representationName
- Frame key to save resulting X. - Scala default value: - null; Python default value:- None- Also available on the trained model. 
- scoreEachIteration
- Whether to score during each iteration of model training. - Scala default value: - false; Python default value:- False- Also available on the trained model. 
- seed
- RNG seed for initialization. - Scala default value: - -1L; Python default value:- -1- Also available on the trained model. 
- splitRatio
- Accepts values in range [0, 1.0] which determine how large part of dataset is used for training and for validation. For example, 0.8 -> 80% training 20% validation. This parameter is ignored when validationDataFrame is set. - Default value: - 1.0
- svdMethod
- Method for computing SVD during initialization (Caution: Randomized is currently experimental and unstable). Possible values are - "GramSVD",- "Power",- "Randomized".- Default value: - "Randomized"- Also available on the trained model. 
- transform
- Transformation of training data. Possible values are - "NONE",- "STANDARDIZE",- "NORMALIZE",- "DEMEAN",- "DESCALE".- Default value: - "NONE"- Also available on the trained model. 
- validationDataFrame
- A data frame dedicated for a validation of the trained model. If the parameters is not set,a validation frame created via the ‘splitRatio’ parameter. The parameter is not serializable! - Scala default value: - null; Python default value:- None