Train DRF Model in Sparkling Water¶
Introduction¶
Distributed Random Forest (DRF) is a powerful classification and regression tool. When given a set of data, DRF generates a forest of classification or regression trees, rather than a single classification or regression tree. For more more comprehensive description see H2O-3 DRF documentation.
Example¶
The following section describes how to train the Distributed Random Forest model in Sparkling Water in Scala & Python following the same example as H2O-3 documentation mentioned above. See also Parameters of H2ODRF and Details of H2ODRFMOJOModel.
Scala
First, let’s start Sparkling Shell as
./bin/sparkling-shell
Start H2O cluster inside the Spark environment
import ai.h2o.sparkling._
import java.net.URI
val hc = H2OContext.getOrCreate()
Parse the data using H2O and convert them to Spark Frame
import org.apache.spark.SparkFiles
val datasetUrl = "https://raw.githubusercontent.com/h2oai/sparkling-water/master/examples/smalldata/cars_20mpg.csv"
spark.sparkContext.addFile(datasetUrl) //for example purposes, on a real cluster it's better to load directly from distributed storage
val sparkDF = spark.read.option("header", "true").option("inferSchema", "true").csv(SparkFiles.get("cars_20mpg.csv"))
val Array(trainingDF, testingDF) = sparkDF.randomSplit(Array(0.8, 0.2))
Set the predictors and response columns
val predictors = Array("displacement", "power", "weight", "acceleration", "year")
val response = "economy_20mpg"
Build and train the model. You can configure all the available DRF arguments using provided setters, such as the label column.
import ai.h2o.sparkling.ml.algos.H2ODRF
val estimator = new H2ODRF()
.setNtrees(10)
.setMaxDepth(5)
.setMinRows(10)
.setCalibrateModel(true)
.setCalibrationDataFrame(testingDF)
.setBinomialDoubleTrees(true)
.setFeaturesCols(predictors)
.setLabelCol(response)
.setColumnsToCategorical(response) //set the response as a factor, please see the comment below
val model = estimator.fit(trainingDF)
By default, the H2ODRF
algorithm distinguishes between a classification and regression problem based on the type of
the label column of the training dataset. If the label column is a string column, a classification model will be trained.
If the label column is a numeric column, a regression model will be trained. If you don’t want be worried about
column data types, you can explicitly identify the problem by using ai.h2o.sparkling.ml.algos.classification.H2ODRFClassifier
or ai.h2o.sparkling.ml.algos.regression.H2ODRFRegressor
instead.
Eval performance
val metrics = model.getTrainingMetrics()
println(metrics)
Run Predictions
model.transform(testingDF).show(false)
You can also get model details via calling methods listed in Details of H2ODRFMOJOModel.
Python
First, let’s start PySparkling Shell as
./bin/pysparkling
Start H2O cluster inside the Spark environment
from pysparkling import *
hc = H2OContext.getOrCreate()
Parse the data using H2O and convert them to Spark Frame
import h2o
frame = h2o.import_file("https://raw.githubusercontent.com/h2oai/sparkling-water/master/examples/smalldata/cars_20mpg.csv")
sparkDF = hc.asSparkFrame(frame)
[trainingDF, testingDF] = sparkDF.randomSplit([0.8, 0.2])
Set the predictors and response columns
predictors = ["displacement", "power","weight","acceleration","year"]
response = "economy_20mpg"
Train the model. You can configure all the available DRF arguments using provided setters or constructor parameters, such as the label column.
from pysparkling.ml import H2ODRF
estimator = H2ODRF(
ntrees = 10,
maxDepth = 5,
minRows = 10,
calibrateModel = True,
calibrationDataFrame = testingDF,
binomialDoubleTrees = True,
featuresCols = predictors,
labelCol = response,
columnsToCategorical = [response])
model = estimator.fit(trainingDF)
By default, the H2ODRF
algorithm distinguishes between a classification and regression problem based on the type of
the label column of the training dataset. If the label column is a string column, a classification model will be trained.
If the label column is a numeric column, a regression model will be trained. If you don’t want to be worried about
column data types, you can explicitly identify the problem by using H2ODRFClassifier
or H2ODRFRegressor
instead.
Eval performance
metrics = model.getTrainingMetrics()
print(metrics)
Run Predictions
model.transform(testingDF).show(truncate = False)
You can also get model details via calling methods listed in Details of H2ODRFMOJOModel.