.. _metrics_H2ORegressionCoxPHMetrics:

H2ORegressionCoxPHMetrics Class
-------------------------------

The class makes available all regression metrics supported by CoxPH algorithm.

**Getter Methods**

getAIC()
  **Returns:** The AIC for this scoring run.

  *Scala type:* ``Double``, *Python type:* ``float``, *R type:* ``numeric``

getConcordance()
  **Returns:** concordance index.

  *Scala type:* ``Double``, *Python type:* ``float``, *R type:* ``numeric``

getConcordant()
  **Returns:** number of concordant pairs.

  *Scala type:* ``Long``, *Python type:* ``int``, *R type:* ``integer``

getCustomMetricName()
  **Returns:** Name of custom metric.

  *Scala type:* ``String``, *Python type:* ``string``, *R type:* ``character``

getCustomMetricValue()
  **Returns:** Value of custom metric.

  *Scala type:* ``Double``, *Python type:* ``float``, *R type:* ``numeric``

getDataFrameSerializer()
  **Returns:** A full name of a serializer used for serialization and deserialization of Spark DataFrames to a JSON value within NullableDataFrameParam.

  *Scala type:* ``String``, *Python type:* ``string``, *R type:* ``character``

getDescription()
  **Returns:** Optional description for this scoring run (to note out-of-bag, sampled data, etc.).

  *Scala type:* ``String``, *Python type:* ``string``, *R type:* ``character``

getDiscordant()
  **Returns:** number of discordant pairs.

  *Scala type:* ``Long``, *Python type:* ``int``, *R type:* ``integer``

getLoglikelihood()
  **Returns:** The logarithmic likelihood for this scoring run.

  *Scala type:* ``Double``, *Python type:* ``float``, *R type:* ``numeric``

getMAE()
  **Returns:** The mean absolute error for this scoring run.

  *Scala type:* ``Double``, *Python type:* ``float``, *R type:* ``numeric``

getMeanResidualDeviance()
  **Returns:** The mean residual deviance for this scoring run.

  *Scala type:* ``Double``, *Python type:* ``float``, *R type:* ``numeric``

getMSE()
  **Returns:** The Mean Squared Error of the prediction for this scoring run.

  *Scala type:* ``Double``, *Python type:* ``float``, *R type:* ``numeric``

getNobs()
  **Returns:** Number of observations.

  *Scala type:* ``Long``, *Python type:* ``int``, *R type:* ``integer``

getR2()
  **Returns:** The R^2 for this scoring run.

  *Scala type:* ``Double``, *Python type:* ``float``, *R type:* ``numeric``

getRMSE()
  **Returns:** The Root Mean Squared Error of the prediction for this scoring run.

  *Scala type:* ``Double``, *Python type:* ``float``, *R type:* ``numeric``

getRMSLE()
  **Returns:** The root mean squared log error for this scoring run.

  *Scala type:* ``Double``, *Python type:* ``float``, *R type:* ``numeric``

getScoringTime()
  **Returns:** The time in mS since the epoch for the start of this scoring run.

  *Scala type:* ``Long``, *Python type:* ``int``, *R type:* ``integer``

getTiedY()
  **Returns:** number of pairs tied in Y value.

  *Scala type:* ``Long``, *Python type:* ``int``, *R type:* ``integer``