H2OMultinomialGLMMetrics Class¶
The class makes available all multinomial metrics supported by GLM algorithm.
Getter Methods
- getAIC()
Returns: AIC.
Scala type:
Double, Python type:float, R type:numeric- getAUC()
Returns: The average AUC for this scoring run.
Scala type:
Double, Python type:float, R type:numeric- getConfusionMatrix()
Returns: The ConfusionMatrix object for this scoring run.
Type:
DataFrame- getCustomMetricName()
Returns: Name of custom metric.
Scala type:
String, Python type:string, R type:character- getCustomMetricValue()
Returns: Value of custom metric.
Scala type:
Double, Python type:float, R type:numeric- getDataFrameSerializer()
Returns: A full name of a serializer used for serialization and deserialization of Spark DataFrames to a JSON value within NullableDataFrameParam.
Scala type:
String, Python type:string, R type:character- getDescription()
Returns: Optional description for this scoring run (to note out-of-bag, sampled data, etc.).
Scala type:
String, Python type:string, R type:character- getHitRatioTable()
Returns: The hit ratio table for this scoring run.
Type:
DataFrame- getLoglikelihood()
Returns: log likelihood.
Scala type:
Double, Python type:float, R type:numeric- getLogloss()
Returns: The logarithmic loss for this scoring run.
Scala type:
Double, Python type:float, R type:numeric- getMeanPerClassError()
Returns: The mean misclassification error per class.
Scala type:
Double, Python type:float, R type:numeric- getMSE()
Returns: The Mean Squared Error of the prediction for this scoring run.
Scala type:
Double, Python type:float, R type:numeric- getMultinomialAUCTable()
Returns: The multinomial AUC values.
Type:
DataFrame- getMultinomialPRAUCTable()
Returns: The multinomial PR AUC values.
Type:
DataFrame- getNobs()
Returns: Number of observations.
Scala type:
Long, Python type:int, R type:integer- getNullDegreesOfFreedom()
Returns: null DOF.
Scala type:
Long, Python type:int, R type:integer- getNullDeviance()
Returns: null deviance.
Scala type:
Double, Python type:float, R type:numeric- getPRAUC()
Returns: The average precision-recall AUC for this scoring run.
Scala type:
Double, Python type:float, R type:numeric- getR2()
Returns: The R^2 for this scoring run.
Scala type:
Double, Python type:float, R type:numeric- getResidualDegreesOfFreedom()
Returns: residual DOF.
Scala type:
Long, Python type:int, R type:integer- getResidualDeviance()
Returns: residual deviance.
Scala type:
Double, Python type:float, R type:numeric- getRMSE()
Returns: The Root Mean Squared Error of the prediction for this scoring run.
Scala type:
Double, Python type:float, R type:numeric- getScoringTime()
Returns: The time in mS since the epoch for the start of this scoring run.
Scala type:
Long, Python type:int, R type:integer