Parameters of H2OGLRM¶
Affected Class¶
ai.h2o.sparkling.ml.features.H2OGLRM
Parameters¶
Each parameter has also a corresponding getter and setter method. (E.g.:
label->getLabel(),setLabel(...))
- maxScoringIterations
The maximum number of iterations used in MOJO scoring to update X
Default value:
100Also available on the trained model.
- reconstructedCol
Reconstructed column name. This column contains reconstructed input values (A_hat=X*Y instead of just X).
Default value:
"H2OGLRM_500fb6202bcc__reconstructed"Also available on the trained model.
- withReconstructedCol
A flag identifying whether a column with reconstructed input values will be produced or not.
Scala default value:
false; Python default value:FalseAlso available on the trained model.
- lossByColNames
Columns names for which loss function will be overridden by the ‘lossByCol’ parameter
Scala default value:
null; Python default value:None- outputCol
Output column name
Default value:
"H2OGLRM_500fb6202bcc__output"Also available on the trained model.
- userX
User-specified initial matrix X.
Scala default value:
null; Python default value:None- userY
User-specified initial matrix Y.
Scala default value:
null; Python default value:None- columnsToCategorical
List of columns to convert to categorical before modelling
Scala default value:
Array(); Python default value:[]- convertInvalidNumbersToNa
If set to ‘true’, the model converts invalid numbers to NA during making predictions.
Scala default value:
false; Python default value:FalseAlso available on the trained model.
- convertUnknownCategoricalLevelsToNa
If set to ‘true’, the model converts unknown categorical levels to NA during making predictions.
Scala default value:
false; Python default value:FalseAlso available on the trained model.
- dataFrameSerializer
A full name of a serializer used for serialization and deserialization of Spark DataFrames to a JSON value within NullableDataFrameParam.
Default value:
"ai.h2o.sparkling.utils.JSONDataFrameSerializer"Also available on the trained model.
- expandUserY
Expand categorical columns in user-specified initial Y.
Scala default value:
true; Python default value:TrueAlso available on the trained model.
- exportCheckpointsDir
Automatically export generated models to this directory.
Scala default value:
null; Python default value:NoneAlso available on the trained model.
- gammaX
Regularization weight on X matrix.
Default value:
0.0Also available on the trained model.
- gammaY
Regularization weight on Y matrix.
Default value:
0.0Also available on the trained model.
- ignoreConstCols
Ignore constant columns.
Scala default value:
true; Python default value:TrueAlso available on the trained model.
- ignoredCols
Names of columns to ignore for training.
Scala default value:
null; Python default value:NoneAlso available on the trained model.
- imputeOriginal
Reconstruct original training data by reversing transform.
Scala default value:
false; Python default value:FalseAlso available on the trained model.
- init
Initialization mode. Possible values are
"Random","SVD","PlusPlus","User","Power".Default value:
"PlusPlus"Also available on the trained model.
- initStepSize
Initial step size.
Default value:
1.0Also available on the trained model.
- inputCols
The array of input columns
Scala default value:
Array(); Python default value:[]Also available on the trained model.
- k
Rank of matrix approximation.
Default value:
1Also available on the trained model.
- keepBinaryModels
If set to true, all binary models created during execution of the
fitmethod will be kept in DKV of H2O-3 cluster.Scala default value:
false; Python default value:False- loadingName
[Deprecated] Use representation_name instead. Frame key to save resulting X.
Scala default value:
null; Python default value:NoneAlso available on the trained model.
- loss
Numeric loss function. Possible values are
"Quadratic","Absolute","Huber","Poisson","Periodic(0)","Logistic","Hinge","Categorical","Ordinal".Default value:
"Quadratic"Also available on the trained model.
- lossByCol
Loss function by column (override). Possible values are
"Quadratic","Absolute","Huber","Poisson","Periodic(0)","Logistic","Hinge","Categorical","Ordinal".Scala default value:
null; Python default value:NoneAlso available on the trained model.
- maxIterations
Maximum number of iterations.
Default value:
1000Also available on the trained model.
- maxRuntimeSecs
Maximum allowed runtime in seconds for model training. Use 0 to disable.
Default value:
0.0Also available on the trained model.
- maxUpdates
Maximum number of updates, defaults to 2*max_iterations.
Default value:
2000Also available on the trained model.
- minStepSize
Minimum step size.
Scala default value:
1.0e-4; Python default value:1.0E-4Also available on the trained model.
- modelId
Destination id for this model; auto-generated if not specified.
Scala default value:
null; Python default value:None- multiLoss
Categorical loss function. Possible values are
"Quadratic","Absolute","Huber","Poisson","Periodic(0)","Logistic","Hinge","Categorical","Ordinal".Default value:
"Categorical"Also available on the trained model.
- period
Length of period (only used with periodic loss function).
Default value:
1Also available on the trained model.
- recoverSvd
Recover singular values and eigenvectors of XY.
Scala default value:
false; Python default value:FalseAlso available on the trained model.
- regularizationX
Regularization function for X matrix. Possible values are
"None","Quadratic","L2","L1","NonNegative","OneSparse","UnitOneSparse","Simplex".Default value:
"None"Also available on the trained model.
- regularizationY
Regularization function for Y matrix. Possible values are
"None","Quadratic","L2","L1","NonNegative","OneSparse","UnitOneSparse","Simplex".Default value:
"None"Also available on the trained model.
- representationName
Frame key to save resulting X.
Scala default value:
null; Python default value:NoneAlso available on the trained model.
- scoreEachIteration
Whether to score during each iteration of model training.
Scala default value:
false; Python default value:FalseAlso available on the trained model.
- seed
RNG seed for initialization.
Scala default value:
-1L; Python default value:-1Also available on the trained model.
- splitRatio
Accepts values in range [0, 1.0] which determine how large part of dataset is used for training and for validation. For example, 0.8 -> 80% training 20% validation. This parameter is ignored when validationDataFrame is set.
Default value:
1.0- svdMethod
Method for computing SVD during initialization (Caution: Randomized is currently experimental and unstable). Possible values are
"GramSVD","Power","Randomized".Default value:
"Randomized"Also available on the trained model.
- transform
Transformation of training data. Possible values are
"NONE","STANDARDIZE","NORMALIZE","DEMEAN","DESCALE".Default value:
"NONE"Also available on the trained model.
- validationDataFrame
A data frame dedicated for a validation of the trained model. If the parameters is not set,a validation frame created via the ‘splitRatio’ parameter. The parameter is not serializable!
Scala default value:
null; Python default value:None