R/import.R
h2o.loadGrid.Rd
Returns a reference to the loaded Grid.
h2o.loadGrid(grid_path, load_params_references = FALSE)
grid_path | A character string containing the path to the file with the grid saved. |
---|---|
load_params_references | A logical which if true will attemt to reload saved objects referenced by grid parameters (e.g. training frame, calibration frame), will fail if grid was saved without referenced objects. |
if (FALSE) { library(h2o) h2o.init() iris <- as.h2o(iris) ntrees_opts = c(1, 5) learn_rate_opts = c(0.1, 0.01) size_of_hyper_space = length(ntrees_opts) * length(learn_rate_opts) hyper_parameters = list(ntrees = ntrees_opts, learn_rate = learn_rate_opts) # Tempdir is chosen arbitrarily. May be any valid folder on an H2O-supported filesystem. baseline_grid <- h2o.grid("gbm", grid_id="gbm_grid_test", x=1:4, y=5, training_frame=iris, hyper_params = hyper_parameters, export_checkpoints_dir = tempdir()) # Remove everything from the cluster or restart it h2o.removeAll() grid <- h2o.loadGrid(paste0(tempdir(),"/",baseline_grid@grid_id)) }