start_column
¶
Available in: CoxPH
Hyperparameter: no
Description¶
This option is used to specify the name of an integer column in the source data set representing the start time. If supplied, then the value of the start_column must be strictly less than the stop_column in each row.
Example¶
library(h2o)
h2o.init()
# import the heart dataset
heart <- h2o.importFile("http://s3.amazonaws.com/h2o-public-test-data/smalldata/coxph_test/heart.csv")
# set the predictor name and response column
x <- "age"
y <- "event"
# set the start and stop columns
start <- "start"
stop <- "stop"
# train your model
heart_coxph <- h2o.coxph(x = x, event_column = y,
start_column = start, stop_column = stop,
training_frame = heart)
# view the model details
heart_coxph
Model Details:
==============
H2OCoxPHModel: coxph
Model ID: CoxPH_model_R_1527700369755_2
Call:
"Surv(start, stop, event) ~ age"
coef exp(coef) se(coef) z p
age 0.0307 1.0312 0.0143 2.15 0.031
Likelihood ratio test = 5.17 on 1 df, p = 0.023
n = 172, number of events = 75
import h2o
from h2o.estimators.coxph import H2OCoxProportionalHazardsEstimator
h2o.init()
# import the heart dataset
heart = h2o.import_file("http://s3.amazonaws.com/h2o-public-test-data/smalldata/coxph_test/heart.csv")
# set the parameters
heart_coxph = H2OCoxProportionalHazardsEstimator(start_column="start",
stop_column="stop",
ties="breslow")
# train your model
heart_coxph.train(x="age", y="event", training_frame=heart)
# view the model details
heart_coxph