Source code for h2o.model.metrics.binomial

import h2o
from h2o.model import MetricsBase, ConfusionMatrix
from h2o.plot import get_matplotlib_pyplot, decorate_plot_result, RAISE_ON_FIGURE_ACCESS
from h2o.utils.metaclass import deprecated_params
from h2o.utils.shared_utils import List
from h2o.utils.typechecks import assert_is_type, numeric, is_type, assert_satisfies


[docs]class H2OBinomialModelMetrics(MetricsBase): """ This class is essentially an API for the AUC object. This class contains methods for inspecting the AUC for different criteria. To input the different criteria, use the static variable ``criteria``. """ def _str_items_custom(self): items = [] cm = self.confusion_matrix() if cm: items.append(cm) mcms = self._metric_json["max_criteria_and_metric_scores"] # create a method to access this if it is that useful! if mcms: items.append(mcms) gl = self.gains_lift() if gl: items.append(gl) return items
[docs] def F1(self, thresholds=None): """ :param thresholds: thresholds parameter must be a list (e.g. ``[0.01, 0.5, 0.99]``). If None, then the threshold maximizing the metric will be used. :returns: The F1 for the given set of thresholds. :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios = [.8], seed = 1234) >>> cars_gbm = H2OGradientBoostingEstimator(seed = 1234) >>> cars_gbm.train(x = predictors, ... y = response, ... training_frame = train, ... validation_frame = valid) >>> cars_gbm.F1() """ return self.metric("f1", thresholds=thresholds)
[docs] def F2(self, thresholds=None): """ :param thresholds: thresholds parameter must be a list (e.g. ``[0.01, 0.5, 0.99]``). If None, then the threshold maximizing the metric will be used. :returns: The F2 for this set of metrics and thresholds. :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios = [.8], seed = 1234) >>> cars_gbm = H2OGradientBoostingEstimator(seed = 1234) >>> cars_gbm.train(x = predictors, ... y = response, ... training_frame = train, ... validation_frame = valid) >>> cars_gbm.F2() """ return self.metric("f2", thresholds=thresholds)
[docs] def F0point5(self, thresholds=None): """ :param thresholds: thresholds parameter must be a list (e.g. ``[0.01, 0.5, 0.99]``). If None, then the threshold maximizing the metric will be used. :returns: The F0.5 for this set of metrics and thresholds. :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios = [.8], seed = 1234) >>> cars_gbm = H2OGradientBoostingEstimator(seed = 1234) >>> cars_gbm.train(x = predictors, ... y = response, ... training_frame = train, ... validation_frame = valid) >>> cars_gbm.F0point5() """ return self.metric("f0point5", thresholds=thresholds)
[docs] def accuracy(self, thresholds=None): """ :param thresholds: thresholds parameter must be a list (e.g. ``[0.01, 0.5, 0.99]``). If None, then the threshold maximizing the metric will be used. :returns: The accuracy for this set of metrics and thresholds. :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios = [.8], seed = 1234) >>> cars_gbm = H2OGradientBoostingEstimator(seed = 1234) >>> cars_gbm.train(x = predictors, ... y = response, ... training_frame = train, ... validation_frame = valid) >>> cars_gbm.accuracy() """ return self.metric("accuracy", thresholds=thresholds)
[docs] def error(self, thresholds=None): """ :param thresholds: thresholds parameter must be a list (e.g. ``[0.01, 0.5, 0.99]``). If None, then the threshold minimizing the error will be used. :returns: The error for this set of metrics and thresholds. :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios = [.8], seed = 1234) >>> cars_gbm = H2OGradientBoostingEstimator(seed = 1234) >>> cars_gbm.train(x = predictors, ... y = response, ... training_frame = train, ... validation_frame = valid) >>> cars_gbm.error() """ return H2OBinomialModelMetrics._accuracy_to_error(self.metric("accuracy", thresholds=thresholds))
def precision(self, thresholds=None): """ :param thresholds: thresholds parameter must be a list (e.g. ``[0.01, 0.5, 0.99]``). If None, then the threshold maximizing the metric will be used. :returns: The precision for this set of metrics and thresholds. :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios = [.8], seed = 1234) >>> cars_gbm = H2OGradientBoostingEstimator(seed = 1234) >>> cars_gbm.train(x = predictors, ... y = response, ... training_frame = train, ... validation_frame = valid) >>> cars_gbm.precision() """ return self.metric("precision", thresholds=thresholds)
[docs] def tpr(self, thresholds=None): """ :param thresholds: thresholds parameter must be a list (e.g. ``[0.01, 0.5, 0.99]``). If None, then the threshold maximizing the metric will be used. :returns: The True Postive Rate. :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios = [.8], seed = 1234) >>> cars_gbm = H2OGradientBoostingEstimator(seed = 1234) >>> cars_gbm.train(x = predictors, ... y = response, ... training_frame = train, ... validation_frame = valid) >>> cars_gbm.tpr() """ return self.metric("tpr", thresholds=thresholds)
[docs] def tnr(self, thresholds=None): """ :param thresholds: thresholds parameter must be a list (e.g. ``[0.01, 0.5, 0.99]``). If None, then the threshold maximizing the metric will be used. :returns: The True Negative Rate. :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios = [.8], seed = 1234) >>> cars_gbm = H2OGradientBoostingEstimator(seed = 1234) >>> cars_gbm.train(x = predictors, ... y = response, ... training_frame = train, ... validation_frame = valid) >>> cars_gbm.tnr() """ return self.metric("tnr", thresholds=thresholds)
[docs] def fnr(self, thresholds=None): """ :param thresholds: thresholds parameter must be a list (e.g. ``[0.01, 0.5, 0.99]``). If None, then the threshold maximizing the metric will be used. :returns: The False Negative Rate. :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios = [.8], seed = 1234) >>> cars_gbm = H2OGradientBoostingEstimator(seed = 1234) >>> cars_gbm.train(x = predictors, ... y = response, ... training_frame = train, ... validation_frame = valid) >>> cars_gbm.fnr() """ return self.metric("fnr", thresholds=thresholds)
[docs] def fpr(self, thresholds=None): """ :param thresholds: thresholds parameter must be a list (e.g. ``[0.01, 0.5, 0.99]``). If None, then the threshold maximizing the metric will be used. :returns: The False Positive Rate. :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios = [.8], seed = 1234) >>> cars_gbm = H2OGradientBoostingEstimator(seed = 1234) >>> cars_gbm.train(x = predictors, ... y = response, ... training_frame = train, ... validation_frame = valid) >>> cars_gbm.fpr() """ return self.metric("fpr", thresholds=thresholds)
[docs] def recall(self, thresholds=None): """ :param thresholds: thresholds parameter must be a list (e.g. ``[0.01, 0.5, 0.99]``). If None, then the threshold maximizing the metric will be used. :returns: Recall for this set of metrics and thresholds. :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios = [.8], seed = 1234) >>> cars_gbm = H2OGradientBoostingEstimator(seed = 1234) >>> cars_gbm.train(x = predictors, ... y = response, ... training_frame = train, ... validation_frame = valid) >>> cars_gbm.recall() """ return self.metric("recall", thresholds=thresholds)
[docs] def precision(self, thresholds=None): """ :param thresholds: thresholds parameter must be a list (e.g. ``[0.01, 0.5, 0.99]``). If None, then the threshold maximizing the metric will be used. :returns: Precision for this set of metrics and thresholds. :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios = [.8], seed = 1234) >>> cars_gbm = H2OGradientBoostingEstimator(seed = 1234) >>> cars_gbm.train(x = predictors, ... y = response, ... training_frame = train, ... validation_frame = valid) >>> cars_gbm.precision() """ return self.metric("precision", thresholds=thresholds)
[docs] def sensitivity(self, thresholds=None): """ :param thresholds: thresholds parameter must be a list (e.g. ``[0.01, 0.5, 0.99]``). If None, then the threshold maximizing the metric will be used. :returns: Sensitivity or True Positive Rate for this set of metrics and thresholds. :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios = [.8], seed = 1234) >>> cars_gbm = H2OGradientBoostingEstimator(seed = 1234) >>> cars_gbm.train(x = predictors, ... y = response, ... training_frame = train, ... validation_frame = valid) >>> cars_gbm.sensitivity() """ return self.metric("sensitivity", thresholds=thresholds)
[docs] def fallout(self, thresholds=None): """ :param thresholds: thresholds parameter must be a list (e.g. ``[0.01, 0.5, 0.99]``). If None, then the threshold maximizing the metric will be used. :returns: The fallout (same as False Positive Rate) for this set of metrics and thresholds. :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios = [.8], seed = 1234) >>> cars_gbm = H2OGradientBoostingEstimator(seed = 1234) >>> cars_gbm.train(x = predictors, ... y = response, ... training_frame = train, ... validation_frame = valid) >>> cars_gbm.fallout() """ return self.metric("fallout", thresholds=thresholds)
[docs] def missrate(self, thresholds=None): """ :param thresholds: thresholds parameter must be a list (e.g. ``[0.01, 0.5, 0.99]``). If None, then the threshold maximizing the metric will be used. :returns: The miss rate (same as False Negative Rate). :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios = [.8], seed = 1234) >>> cars_gbm = H2OGradientBoostingEstimator(seed = 1234) >>> cars_gbm.train(x = predictors, ... y = response, ... training_frame = train, ... validation_frame = valid) >>> cars_gbm.missrate() """ return self.metric("missrate", thresholds=thresholds)
[docs] def specificity(self, thresholds=None): """ :param thresholds: thresholds parameter must be a list (e.g. ``[0.01, 0.5, 0.99]``). If None, then the threshold maximizing the metric will be used. :returns: The specificity (same as True Negative Rate). :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios = [.8], seed = 1234) >>> cars_gbm = H2OGradientBoostingEstimator(seed = 1234) >>> cars_gbm.train(x = predictors, ... y = response, ... training_frame = train, ... validation_frame = valid) >>> cars_gbm.specificity() """ return self.metric("specificity", thresholds=thresholds)
[docs] def mcc(self, thresholds=None): """ :param thresholds: thresholds parameter must be a list (e.g. ``[0.01, 0.5, 0.99]``). If None, then the threshold maximizing the metric will be used. :returns: The absolute MCC (a value between 0 and 1, 0 being totally dissimilar, 1 being identical). :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios = [.8], seed = 1234) >>> cars_gbm = H2OGradientBoostingEstimator(seed = 1234) >>> cars_gbm.train(x = predictors, ... y = response, ... training_frame = train, ... validation_frame = valid) >>> cars_gbm.mcc() """ return self.metric("absolute_mcc", thresholds=thresholds)
[docs] def max_per_class_error(self, thresholds=None): """ :param thresholds: thresholds parameter must be a list (e.g. ``[0.01, 0.5, 0.99]``). If None, then the threshold minimizing the error will be used. :returns: Return 1 - min(per class accuracy). :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios = [.8], seed = 1234) >>> cars_gbm = H2OGradientBoostingEstimator(seed = 1234) >>> cars_gbm.train(x = predictors, ... y = response, ... training_frame = train, ... validation_frame = valid) >>> cars_gbm.max_per_class_error() """ return H2OBinomialModelMetrics._accuracy_to_error(self.metric("min_per_class_accuracy", thresholds=thresholds))
[docs] def mean_per_class_error(self, thresholds=None): """ :param thresholds: thresholds parameter must be a list (e.g. ``[0.01, 0.5, 0.99]``). If None, then the threshold minimizing the error will be used. :returns: mean per class error. :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios = [.8], seed = 1234) >>> cars_gbm = H2OGradientBoostingEstimator(seed = 1234) >>> cars_gbm.train(x = predictors, ... y = response, ... training_frame = train, ... validation_frame = valid) >>> cars_gbm.mean_per_class_error() """ return H2OBinomialModelMetrics._accuracy_to_error(self.metric("mean_per_class_accuracy", thresholds=thresholds))
@staticmethod def _accuracy_to_error(accuracies): errors = List() errors.extend([acc[0], 1 - acc[1]] for acc in accuracies) setattr(errors, 'value', [1 - v for v in accuracies.value] if isinstance(accuracies.value, list) else 1 - accuracies.value ) return errors
[docs] def metric(self, metric, thresholds=None): """ :param str metric: A metric among :const:`maximizing_metrics`. :param thresholds: thresholds parameter must be a list (e.g. ``[0.01, 0.5, 0.99]``). If None, then the threshold maximizing the metric will be used. If 'all', then all stored thresholds are used and returned with the matching metric. :returns: The set of metrics for the list of thresholds. The returned list has a 'value' property holding only the metric value (if no threshold provided or if provided as a number), or all the metric values (if thresholds provided as a list) :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> local_data = [[1, 'a'],[1, 'a'],[1, 'a'],[1, 'a'],[1, 'a'], ... [1, 'a'],[1, 'a'],[1, 'a'],[1, 'a'],[1, 'a'], ... [0, 'b'],[0, 'b'],[0, 'b'],[0, 'b'],[0, 'b'], ... [0, 'b'],[0, 'b'],[0, 'b'],[0, 'b'],[0, 'b']] >>> h2o_data = h2o.H2OFrame(local_data) >>> h2o_data.set_names(['response', 'predictor']) >>> h2o_data["response"] = h2o_data["response"].asfactor() >>> gbm = H2OGradientBoostingEstimator(ntrees=1, ... distribution="bernoulli") >>> gbm.train(x=list(range(1,h2o_data.ncol)), ... y="response", ... training_frame=h2o_data) >>> perf = gbm.model_performance() >>> perf.metric("tps", [perf.find_threshold_by_max_metric("f1")])[0][1] """ assert_is_type(thresholds, None, 'all', numeric, [numeric]) if metric not in H2OBinomialModelMetrics.maximizing_metrics: raise ValueError("The only allowable metrics are {}".format(', '.join(H2OBinomialModelMetrics.maximizing_metrics))) h2o_metric = (H2OBinomialModelMetrics.metrics_aliases[metric] if metric in H2OBinomialModelMetrics.metrics_aliases else metric) value_is_scalar = is_type(metric, str) and (thresholds is None or is_type(thresholds, numeric)) if thresholds is None: thresholds = [self.find_threshold_by_max_metric(h2o_metric)] elif thresholds == 'all': thresholds = None elif is_type(thresholds, numeric): thresholds = [thresholds] metrics = List() thresh2d = self._metric_json['thresholds_and_metric_scores'] if thresholds is None: # fast path to return all thresholds: skipping find_idx logic metrics.extend(list(t) for t in zip(thresh2d['threshold'], thresh2d[h2o_metric])) else: for t in thresholds: idx = self.find_idx_by_threshold(t) metrics.append([t, thresh2d[h2o_metric][idx]]) setattr(metrics, 'value', metrics[0][1] if value_is_scalar else list(r[1] for r in metrics) ) return metrics
[docs] @deprecated_params({'save_to_file': 'save_plot_path'}) def plot(self, type="roc", server=False, save_plot_path=None, plot=True): """ Produce the desired metric plot. :param type: the type of metric plot. One of (currently supported): - ROC curve ('roc') - Precision Recall curve ('pr') - Gains Lift curve ('gainslift') :param server: if True, generate plot inline using matplotlib's Anti-Grain Geometry (AGG) backend. :param save_plot_path: filename to save the plot to. :param plot: ``True`` to plot curve; ``False`` to get a tuple of values at axis x and y of the plot (tprs and fprs for AUC, recall and precision for PR). :returns: None or values of x and y axis of the plot + the resulting plot (can be accessed using ``result.figure()``). :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> predictors = ["displacement","power","weight","acceleration","year"] >>> response = "economy_20mpg" >>> train, valid = cars.split_frame(ratios = [.8], seed = 1234) >>> cars_gbm = H2OGradientBoostingEstimator(seed = 1234) >>> cars_gbm.train(x = predictors, ... y = response, ... training_frame = train, ... validation_frame = valid) >>> cars_gbm.plot(type="roc") >>> cars_gbm.plot(type="pr") """ assert type in ["roc", "pr", "gains_lift"] if type == "roc": return self._plot_roc(server, save_plot_path, plot) elif type == "pr": return self._plot_pr(server, save_plot_path, plot) elif type == "gains_lift": return self.gains_lift_plot(server=server, save_plot_path=save_plot_path, plot=plot)
def _plot_roc(self, server=False, save_to_file=None, plot=True): if plot: plt = get_matplotlib_pyplot(server) if plt is None: return decorate_plot_result(figure=RAISE_ON_FIGURE_ACCESS) fig = plt.figure() plt.xlabel('False Positive Rate (FPR)') plt.ylabel('True Positive Rate (TPR)') plt.title('Receiver Operating Characteristic Curve') plt.text(0.5, 0.5, r'AUC={0:.4f}'.format(self._metric_json["AUC"])) plt.plot(self.fprs, self.tprs, 'b--') plt.axis([0, 1, 0, 1]) plt.grid(True) plt.tight_layout() if not server: plt.show() if save_to_file is not None: # only save when a figure is actually plotted fig.savefig(fname=save_to_file) return decorate_plot_result(res=(self.fprs, self.tprs), figure=fig) else: return decorate_plot_result(res=(self.fprs, self.tprs)) def _plot_pr(self, server=False, save_to_file=None, plot=True): recalls = self.tprs precisions = [x[1] for x in self.precision(thresholds='all')] assert len(precisions) == len(recalls), "Precision and recall arrays must have the same length" if plot: plt = get_matplotlib_pyplot(server) if plt is None: return decorate_plot_result(figure=RAISE_ON_FIGURE_ACCESS) fig = plt.figure() plt.xlabel('Recall (TP/(TP+FN))') plt.ylabel('Precision (TP/(TP+FP)') plt.title('Precision Recall Curve') plt.text(0.75, 0.95, r'auc_pr={0:.4f}'.format(self._metric_json["pr_auc"])) plt.plot(recalls, precisions, 'b--') plt.axis([0, 1, 0, 1]) plt.grid(True) plt.tight_layout() if not server: plt.show() if save_to_file is not None: # only save when a figure is actually plotted plt.savefig(fname=save_to_file) return decorate_plot_result(res=(recalls, precisions), figure=fig) else: return decorate_plot_result(res=(recalls, precisions)) @property def fprs(self): """ Return all false positive rates for all threshold values. :returns: a list of false positive rates. :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> r = cars[0].runif() >>> train = cars[r > .2] >>> valid = cars[r <= .2] >>> response_col = "economy_20mpg" >>> distribution = "bernoulli" >>> predictors = ["displacement","power","weight","acceleration","year"] >>> gbm = H2OGradientBoostingEstimator(nfolds=3, distribution=distribution, fold_assignment="Random") >>> gbm.train(y=response_col, x=predictors, validation_frame=valid, training_frame=train) >>> (fprs, tprs) = gbm.roc(train=True, valid=False, xval=False) >>> fprs """ return self._metric_json["thresholds_and_metric_scores"]["fpr"] @property def tprs(self): """ Return all true positive rates for all threshold values. :returns: a list of true positive rates. :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> r = cars[0].runif() >>> train = cars[r > .2] >>> valid = cars[r <= .2] >>> response_col = "economy_20mpg" >>> distribution = "bernoulli" >>> predictors = ["displacement","power","weight","acceleration","year"] >>> gbm = H2OGradientBoostingEstimator(nfolds=3, distribution=distribution, fold_assignment="Random") >>> gbm.train(y=response_col, x=predictors, validation_frame=valid, training_frame=train) >>> (fprs, tprs) = gbm.roc(train=True, valid=False, xval=False) >>> tprs """ return self._metric_json["thresholds_and_metric_scores"]["tpr"]
[docs] def roc(self): """ Return the coordinates of the ROC curve as a tuple containing the false positive rates as a list and true positive rates as a list. :returns: The ROC values. :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["economy_20mpg"] = cars["economy_20mpg"].asfactor() >>> r = cars[0].runif() >>> train = cars[r > .2] >>> valid = cars[r <= .2] >>> response_col = "economy_20mpg" >>> distribution = "bernoulli" >>> predictors = ["displacement","power","weight","acceleration","year"] >>> gbm = H2OGradientBoostingEstimator(nfolds=3, ... distribution=distribution, ... fold_assignment="Random") >>> gbm.train(x=predictors, ... y=response_col, ... validation_frame=valid, ... training_frame=train) >>> gbm.roc(train=True, valid=False, xval=False) """ return self.fprs, self.tprs
metrics_aliases = dict( fallout='fpr', missrate='fnr', recall='tpr', sensitivity='tpr', specificity='tnr' ) #: metrics names allowed for confusion matrix maximizing_metrics = ('absolute_mcc', 'accuracy', 'precision', 'f0point5', 'f1', 'f2', 'mean_per_class_accuracy', 'min_per_class_accuracy', 'tns', 'fns', 'fps', 'tps', 'tnr', 'fnr', 'fpr', 'tpr') + tuple(metrics_aliases.keys())
[docs] def confusion_matrix(self, metrics=None, thresholds=None): """ Get the confusion matrix for the specified metric. :param metrics: A string (or list of strings) among metrics listed in :const:`maximizing_metrics`. Defaults to ``'f1'``. :param thresholds: A value (or list of values) between 0 and 1. If None, then the thresholds maximizing each provided metric will be used. :returns: a list of ConfusionMatrix objects (if there are more than one to return), a single ConfusionMatrix (if there is only one), or None if thresholds are metrics scores are missing. :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["cylinders"] = cars["cylinders"].asfactor() >>> train, valid = cars.split_frame(ratios=[.8], seed=1234) >>> response = "cylinders" >>> distribution = "multinomial" >>> predictors = ["displacement","power","weight","acceleration","year"] >>> gbm = H2OGradientBoostingEstimator(nfolds=3, ... distribution=distribution) >>> gbm.train(x=predictors, ... y = response, ... training_frame = train, ... validation_frame = valid) >>> gbm.confusion_matrix(train) """ thresh2d = self._metric_json['thresholds_and_metric_scores'] if thresh2d is None: return None # make lists out of metrics and thresholds arguments if metrics is None and thresholds is None: metrics = ['f1'] if isinstance(metrics, list): metrics_list = metrics elif metrics is None: metrics_list = [] else: metrics_list = [metrics] if isinstance(thresholds, list): thresholds_list = thresholds elif thresholds is None: thresholds_list = [] else: thresholds_list = [thresholds] # error check the metrics_list and thresholds_list assert_is_type(thresholds_list, [numeric]) assert_satisfies(thresholds_list, all(0 <= t <= 1 for t in thresholds_list)) if not all(m.lower() in H2OBinomialModelMetrics.maximizing_metrics for m in metrics_list): raise ValueError("The only allowable metrics are {}".format(', '.join(H2OBinomialModelMetrics.maximizing_metrics))) # make one big list that combines the thresholds and metric-thresholds metrics_thresholds = [self.find_threshold_by_max_metric(m) for m in metrics_list] for mt in metrics_thresholds: thresholds_list.append(mt) first_metrics_thresholds_offset = len(thresholds_list) - len(metrics_thresholds) actual_thresholds = [float(e[0]) for i, e in enumerate(thresh2d.cell_values)] cms = [] for i, t in enumerate(thresholds_list): idx = self.find_idx_by_threshold(t) row = thresh2d.cell_values[idx] tns = row[11] fns = row[12] fps = row[13] tps = row[14] p = tps + fns n = tns + fps c0 = n - fps c1 = p - tps if t in metrics_thresholds: m = metrics_list[i - first_metrics_thresholds_offset] table_header = "Confusion Matrix (Act/Pred) for max {} @ threshold = {}".format(m, actual_thresholds[idx]) else: table_header = "Confusion Matrix (Act/Pred) @ threshold = {}".format(actual_thresholds[idx]) cms.append(ConfusionMatrix(cm=[[c0, fps], [c1, tps]], domains=self._metric_json['domain'], table_header=table_header)) if len(cms) == 1: return cms[0] else: return cms
[docs] def find_threshold_by_max_metric(self, metric): """ :param metrics: A string among the metrics listed in :const:`maximizing_metrics`. :returns: the threshold at which the given metric is maximal. :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> local_data = [[1, 'a'],[1, 'a'],[1, 'a'],[1, 'a'],[1, 'a'], ... [1, 'a'],[1, 'a'],[1, 'a'],[1, 'a'],[1, 'a'], ... [0, 'b'],[0, 'b'],[0, 'b'],[0, 'b'],[0, 'b'], ... [0, 'b'],[0, 'b'],[0, 'b'],[0, 'b'],[0, 'b']] >>> h2o_data = h2o.H2OFrame(local_data) >>> h2o_data.set_names(['response', 'predictor']) >>> h2o_data["response"] = h2o_data["response"].asfactor() >>> gbm = H2OGradientBoostingEstimator(ntrees=1, ... distribution="bernoulli") >>> gbm.train(x=list(range(1,h2o_data.ncol)), ... y="response", ... training_frame=h2o_data) >>> perf = gbm.model_performance() >>> perf.find_threshold_by_max_metric("f1") """ crit2d = self._metric_json['max_criteria_and_metric_scores'] # print(crit2d) h2o_metric = (H2OBinomialModelMetrics.metrics_aliases[metric] if metric in H2OBinomialModelMetrics.metrics_aliases else metric) for e in crit2d.cell_values: if e[0] == "max " + h2o_metric.lower(): return e[1] raise ValueError("No metric " + str(metric.lower()))
[docs] def find_idx_by_threshold(self, threshold): """ Retrieve the index in this metric's threshold list at which the given threshold is located. :param threshold: Find the index of this input threshold. :returns: the index. :raises ValueError: if no such index can be found. :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> local_data = [[1, 'a'],[1, 'a'],[1, 'a'],[1, 'a'],[1, 'a'], ... [1, 'a'],[1, 'a'],[1, 'a'],[1, 'a'],[1, 'a'], ... [0, 'b'],[0, 'b'],[0, 'b'],[0, 'b'],[0, 'b'], ... [0, 'b'],[0, 'b'],[0, 'b'],[0, 'b'],[0, 'b']] >>> h2o_data = h2o.H2OFrame(local_data) >>> h2o_data.set_names(['response', 'predictor']) >>> h2o_data["response"] = h2o_data["response"].asfactor() >>> gbm = H2OGradientBoostingEstimator(ntrees=1, ... distribution="bernoulli") >>> gbm.train(x=list(range(1,h2o_data.ncol)), ... y="response", ... training_frame=h2o_data) >>> perf = gbm.model_performance() >>> perf.find_idx_by_threshold(0.45) """ assert_is_type(threshold, numeric) thresh2d = self._metric_json['thresholds_and_metric_scores'] # print(thresh2d) for i, e in enumerate(thresh2d.cell_values): t = float(e[0]) if abs(t - threshold) < 1e-8 * max(t, threshold): return i if 0 <= threshold <= 1: thresholds = [float(e[0]) for i, e in enumerate(thresh2d.cell_values)] threshold_diffs = [abs(t - threshold) for t in thresholds] closest_idx = threshold_diffs.index(min(threshold_diffs)) closest_threshold = thresholds[closest_idx] print("Could not find exact threshold {0}; using closest threshold found {1}." .format(threshold, closest_threshold)) return closest_idx raise ValueError("Threshold must be between 0 and 1, but got {0} ".format(threshold))
[docs] def gains_lift(self): """Retrieve the Gains/Lift table. :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> cars = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/junit/cars_20mpg.csv") >>> cars["cylinders"] = cars["cylinders"].asfactor() >>> train, valid = cars.split_frame(ratios=[.8], seed=1234) >>> response_col = "cylinders" >>> distribution = "multinomial" >>> predictors = ["displacement","power","weight","acceleration","year"] >>> gbm = H2OGradientBoostingEstimator(nfolds=3, ... distribution=distribution) >>> gbm.train(x=predictors, ... y = response, ... training_frame = train, ... validation_frame = valid) >>> gbm.gains_lift() """ if 'gains_lift_table' in self._metric_json: return self._metric_json['gains_lift_table'] return None
[docs] @deprecated_params({'save_to_file': 'save_plot_path'}) def gains_lift_plot(self, type="both", server=False, save_plot_path=None, plot=True): """ Plot Gains/Lift curves. :param type: one of: - "both" (default) - "gains" - "lift" :param server: if ``True``, generate plot inline using matplotlib's Anti-Grain Geometry (AGG) backend. :param save_plot_path: filename to save the plot to. :param plot: ``True`` to plot curve; ``False`` to get a gains lift table. :returns: Gains lift table + the resulting plot (can be accessed using ``result.figure()``). """ type = type.lower() assert type in ["both", "gains", "lift"] gl = self.gains_lift() if plot: plt = get_matplotlib_pyplot(server) if plt is None: return decorate_plot_result(figure=RAISE_ON_FIGURE_ACCESS) title = [] ylab = [] x = gl['cumulative_data_fraction'] yccr = gl['cumulative_capture_rate'] ycl = gl['cumulative_lift'] plt = get_matplotlib_pyplot(server=False, raise_if_not_available=True) fig = plt.figure(figsize=(10, 10)) plt.grid(True) if type in ["both", "gains"]: plt.plot(x, yccr, zorder=10, label='cumulative capture rate') title.append("Gains") ylab.append('cumulative capture rate') if type in ["both", "lift"]: plt.plot(x, ycl, zorder=10, label='cumulative lift') title.append("Lift") ylab.append('cumulative lift') plt.legend(loc=4, fancybox=True, framealpha=0.5) plt.xlim(0, None) plt.ylim(0, None) plt.xlabel('cumulative data fraction') plt.ylabel(", ".join(ylab)) plt.title(" / ".join(title)) if not server: plt.show() if save_plot_path is not None: # only save when a figure is actually plotted fig.savefig(fname=save_plot_path) return decorate_plot_result(res=gl, figure=fig) else: return decorate_plot_result(res=gl)
[docs] def thresholds_and_metric_scores(self): """Retrieve the thresholds and metric scores table. :examples: >>> from h2o.estimators.gbm import H2OGradientBoostingEstimator >>> local_data = [[1, 'a'],[1, 'a'],[1, 'a'],[1, 'a'],[1, 'a'], ... [1, 'a'],[1, 'a'],[1, 'a'],[1, 'a'],[1, 'a'], ... [0, 'b'],[0, 'b'],[0, 'b'],[0, 'b'],[0, 'b'], ... [0, 'b'],[0, 'b'],[0, 'b'],[0, 'b'],[0, 'b']] >>> h2o_data = h2o.H2OFrame(local_data) >>> h2o_data.set_names(['response', 'predictor']) >>> h2o_data["response"] = h2o_data["response"].asfactor() >>> gbm = H2OGradientBoostingEstimator(ntrees=1, ... distribution="bernoulli") >>> gbm.train(x=list(range(1,h2o_data.ncol)), ... y="response", ... training_frame=h2o_data) >>> perf = gbm.model_performance() >>> perf """ if 'thresholds_and_metric_scores' in self._metric_json: return self._metric_json['thresholds_and_metric_scores'] return None