Source code for h2o.group_by

# -*- encoding: utf-8 -*-
"""
Group-by operations on an H2OFrame.

:copyright: (c) 2016 H2O.ai
:license:   Apache License Version 2.0 (see LICENSE for details)
"""
from __future__ import absolute_import, division, print_function, unicode_literals

import h2o
from h2o.expr import ExprNode
from h2o.utils.compatibility import *  # NOQA
from h2o.utils.typechecks import is_str, is_listlike, is_int


[docs]class GroupBy(object): """ A class that represents the group by operation on an H2OFrame. Sample usage: >>> my_frame = ... # some existing H2OFrame >>> grouped = my_frame.group_by(by=["C1","C2"]) >>> grouped.sum(col="X1",na="all").mean(col="X5",na="all").max() >>> grouped.get_frame() Any number of aggregations may be chained together in this manner. If no arguments are given to the aggregation (e.g. "max" in the above example), then it is assumed that the aggregation should apply to all columns but the group by columns. The na parameter is one of ["all","ignore","rm"]. "all" - include NAs "rm" - exclude NAs Variance (var) and standard deviation (sd) are the sample (not population) statistics. """ def __init__(self, fr, by): self._fr = fr # IN self._by = by # IN self._aggs = {} # IN self._res = None # OUT if is_str(by): self._by = [self._fr.names.index(by)] elif is_listlike(by): self._by = [self._fr.names.index(b) if is_str(b) else b for b in by] else: self._by = [self._by]
[docs] def min(self, col=None, na="all"): return self._add_agg("min", col, na)
[docs] def max(self, col=None, na="all"): return self._add_agg("max", col, na)
[docs] def mean(self, col=None, na="all"): return self._add_agg("mean", col, na)
[docs] def count(self, na="all"): return self._add_agg("nrow", None, na)
[docs] def sum(self, col=None, na="all"): return self._add_agg("sum", col, na)
[docs] def sd(self, col=None, na="all"): return self._add_agg("sdev", col, na)
[docs] def var(self, col=None, na="all"): return self._add_agg("var", col, na)
# def first(self,col=None,na="all"): return self._add_agg("first",col,na) # def last( self,col=None,na="all"): return self._add_agg("last",col,na)
[docs] def ss(self, col=None, na="all"): return self._add_agg("sumSquares", col, na)
[docs] def mode(self, col=None, na="all"): return self._add_agg("mode", col, na)
@property def frame(self): """ :return: the result of the group by """ return self.get_frame()
[docs] def get_frame(self): """ :return: the result of the group by """ if not self._res: aggs = [] for k in self._aggs: aggs += (self._aggs[k]) self._res = h2o.H2OFrame._expr(expr=ExprNode("GB", self._fr, self._by, *aggs)) return self._res
def _add_agg(self, op, col, na): if op == "nrow": col = 0 if col is None: for i in range(self._fr.ncol): if i not in self._by: self._add_agg(op, i, na) return self elif is_str(col): cidx = self._fr.names.index(col) elif is_int(col): cidx = col elif is_listlike(col): for i in col: self._add_agg(op, i, na) return self else: raise ValueError("col must be a column name or index.") name = "{}_{}".format(op, self._fr.names[cidx]) self._aggs[name] = [op, cidx, na] return self def __repr__(self): print("GroupBy: ") print(" Frame: {}; by={}".format(self._fr.frame_id, str(self._by))) print(" Aggregates: {}".format(str(self._aggs.keys()))) print("*** Use get_frame() to get groupby frame ***") return ""