# -*- encoding: utf-8 -*-
"""
h2o -- module for using H2O services.
:copyright: (c) 2016 H2O.ai
:license: Apache License Version 2.0 (see LICENSE for details)
"""
from __future__ import absolute_import, division, print_function, unicode_literals
import os
import re
import warnings
from h2o.backend.connection import H2OConnection
from h2o.backend.server import H2OLocalServer
from h2o.exceptions import H2OConnectionError
from .expr import ExprNode
from .job import H2OJob
from .frame import H2OFrame
from .estimators.estimator_base import H2OEstimator
from .estimators.deeplearning import H2OAutoEncoderEstimator
from .estimators.deeplearning import H2ODeepLearningEstimator
from .estimators.gbm import H2OGradientBoostingEstimator
from .estimators.glm import H2OGeneralizedLinearEstimator
from .estimators.glrm import H2OGeneralizedLowRankEstimator
from .estimators.kmeans import H2OKMeansEstimator
from .estimators.naive_bayes import H2ONaiveBayesEstimator
from .estimators.random_forest import H2ORandomForestEstimator
from .grid.grid_search import H2OGridSearch
from .transforms.decomposition import H2OPCA
from .transforms.decomposition import H2OSVD
from .utils.debugging import * # NOQA
from .utils.compatibility import * # NOQA
from h2o.utils.typechecks import assert_is_type, assert_is_str, assert_maybe_str, is_str, is_int, is_listlike
from .utils.shared_utils import quoted, is_list_of_lists, gen_header, py_tmp_key, urlopen, h2o_deprecated
warnings.simplefilter("always", DeprecationWarning)
h2oconn = None
[docs]def connect(server=None, url=None, ip=None, port=None, https=None, verify_ssl_certificates=None, auth=None,
proxy=None, cluster_name=None, verbose=True):
"""
Connect to an existing H2O server, remote or local.
There are two ways to connect to a server: either pass a `server` parameter containing an instance of
an H2OLocalServer, or specify `ip` and `port` of the server that you want to connect to.
:param server: An H2OLocalServer instance to connect to (optional).
:param url: Full URL of the server to connect to (can be used instead of `ip` + `port` + `https`).
:param ip: The ip address (or host name) of the server where H2O is running.
:param port: Port number that H2O service is listening to.
:param https: Set to True to connect via https:// instead of http://.
:param verify_ssl_certificates: When using https, setting this to False will disable SSL certificates verification.
:param auth: Either a (username, password) pair for basic authentication, or one of the requests.auth
authenticator objects.
:param proxy: Proxy server address.
:param cluster_name: Name of the H2O cluster to connect to. This option is used from Steam only.
:param verbose: Set to False to disable printing connection status messages.
"""
global h2oconn
h2oconn = H2OConnection.open(**locals())
if verbose:
h2oconn.info().pprint()
return h2oconn
[docs]def api(endpoint, data=None, json=None, filename=None):
"""Perform a REST API request to a previously connected server."""
assert h2oconn is not None, "Connection was not established. Did you run `h2o.connect()`?"
return h2oconn.request(endpoint, data=data, json=json, filename=filename)
[docs]def connection():
"""Return current H2OConnection handler."""
return h2oconn
def version_check():
"""
Used to verify that h2o-python module and the H2O server are compatible with each other.
"""
if os.environ.get("H2O_DISABLE_STRICT_VERSION_CHECK"): return
ci = h2oconn.info()
if not ci:
raise H2OConnectionError("Connection not initialized. Did you run h2o.connect()?")
ver_h2o = ci.version
from .__init__ import __version__ as ver_pkg
if ver_pkg == "SUBST_PROJECT_VERSION": ver_pkg = "UNKNOWN"
if str(ver_h2o) != str(ver_pkg):
branch_name_h2o = ci.branch_name
build_number_h2o = ci.build_number
if build_number_h2o is None or build_number_h2o == "unknown":
raise H2OConnectionError(
"Version mismatch. H2O is version {0}, but the h2o-python package is version {1}. "
"Upgrade H2O and h2o-Python to latest stable version - "
"http://h2o-release.s3.amazonaws.com/h2o/latest_stable.html"
"".format(ver_h2o, ver_pkg))
elif build_number_h2o == "99999":
raise H2OConnectionError(
"Version mismatch. H2O is version {0}, but the h2o-python package is version {1}. "
"This is a developer build, please contact your developer."
"".format(ver_h2o, ver_pkg))
else:
raise H2OConnectionError(
"Version mismatch. H2O is version {0}, but the h2o-python package is version {1}. "
"Install the matching h2o-Python version from - "
"http://h2o-release.s3.amazonaws.com/h2o/{2}/{3}/index.html."
"".format(ver_h2o, ver_pkg, branch_name_h2o, build_number_h2o))
[docs]def init(url=None, ip=None, port=None, https=None, insecure=False, username=None, password=None, cluster_name=None,
proxy=None, start_h2o=True, nthreads=-1, ice_root=None, enable_assertions=True,
max_mem_size=None, min_mem_size=None, strict_version_check=True, **kwargs):
"""
Attempt to connect to a local server, or if not successful start a new server and connect to it.
:param url:
:param ip:
:param port:
:param https:
:param insecure:
:param username:
:param password:
:param cluster_name:
:param proxy:
:param start_h2o:
:param nthreads:
:param ice_root:
:param enable_assertions:
:param max_mem_size:
:param min_mem_size:
:param strict_version_check:
:param kwargs: (all other deprecated attributes)
:returns: nothing
"""
scheme = "https" if https else "http"
proxy = proxy[scheme] if proxy is not None and scheme in proxy else \
kwargs["proxies"][scheme] if "proxies" in kwargs and scheme in kwargs["proxies"] else None
mmax = int(max_mem_size) if max_mem_size is not None else \
kwargs["max_mem_size_GB"] << 30 if "max_mem_size_GB" in kwargs else None
mmin = int(min_mem_size) if min_mem_size is not None else \
kwargs["min_mem_size_GB"] << 30 if "min_mem_size_GB" in kwargs else None
auth = (username, password) if username and password else None
if not start_h2o:
print("Warning: if you don't want to start local H2O server, then use of `h2o.connect()` is preferred.")
if ip and ip != "localhost" and ip != "127.0.0.1" and start_h2o:
print("Warning: connecting to remote server but falling back to local... Did you mean to use `h2o.connect()`?")
try:
connect(url=url, ip=ip, port=port, https=https, verify_ssl_certificates=not insecure, auth=auth,
proxy=proxy, cluster_name=cluster_name, verbose=True)
except H2OConnectionError:
# Backward compatibility: in init() port parameter really meant "baseport" when starting a local server...
if port and not str(port).endswith("+"):
port = str(port) + "+"
if not start_h2o: raise
global h2oconn
hs = H2OLocalServer.start(nthreads=nthreads, enable_assertions=enable_assertions, max_mem_size=mmax,
min_mem_size=mmin, ice_root=ice_root, port=port)
h2oconn = H2OConnection.open(server=hs, https=https, verify_ssl_certificates=not insecure,
auth=auth, proxy=proxy, cluster_name=cluster_name, verbose=True)
if strict_version_check:
version_check()
if h2oconn.info().build_too_old:
print("Warning: Your H2O cluster version is too old ({})! Please download and install the latest version from http://h2o.ai/download/".format(h2oconn.info().build_age))
[docs]def lazy_import(path):
"""
Import a single file or collection of files.
:param path: A path to a data file (remote or local).
"""
if is_listlike(path):
return [_import(p)[0] for p in path]
else:
assert_is_str(path)
return _import(path)
def _import(path):
j = api("GET /3/ImportFiles", data={"path": path})
if j['fails']: raise ValueError("ImportFiles of " + path + " failed on " + str(j['fails']))
return j['destination_frames']
[docs]def upload_file(path, destination_frame="", header=(-1, 0, 1), sep="", col_names=None, col_types=None,
na_strings=None):
"""
Upload a dataset at the path given from the local machine to the H2O cluster.
Does a single-threaded push to H2O.
Also see :meth:`import_file`.
Parameters
----------
path : str
A path specifying the location of the data to upload.
destination_frame : str, optional
The unique hex key assigned to the imported file. If none is given, a key will
automatically be generated.
header : int, optional
-1 means the first line is data, 0 means guess, 1 means first line is header.
sep : str, optional
The field separator character. Values on each line of the file are separated by
this character. If sep = "", the parser will automatically detect the separator.
col_names : list, optional
A list of column names for the file.
col_types : list or dict, optional
A list of types or a dictionary of column names to types to specify whether columns
should be forced to a certain type upon import parsing. If a list, the types for
elements that are None will be guessed. The possible types a column may have are
"unknown" - this will force the column to be parsed as all NA
"uuid" - the values in the column must be true UUID or will be parsed as NA
"string" - force the column to be parsed as a string
"numeric" - force the column to be parsed as numeric. H2O will handle the
compression of the numeric data in the optimal manner.
"enum" - force the column to be parsed as a categorical column.
"time" - force the column to be parsed as a time column. H2O will attempt to
parse the following list of date time formats
date - "yyyy-MM-dd", "yyyy MM dd", "dd-MMM-yy", "dd MMM yy"
time - "HH:mm:ss", "HH:mm:ss:SSS", "HH:mm:ss:SSSnnnnnn", "HH.mm.ss" "HH.mm.ss.SSS",
"HH.mm.ss.SSSnnnnnn"
Times can also contain "AM" or "PM".
na_strings : list or dict, optional
A list of strings, or a list of lists of strings (one list per column), or a
dictionary of column names to strings which are to be interpreted as missing values.
Returns
-------
A new H2OFrame instance.
Examples
--------
>> h2o.upload_file(path="/path/to/local/data", destination_frame="my_local_data")
"""
return H2OFrame()._upload_parse(path, destination_frame, header, sep, col_names, col_types, na_strings)
[docs]def import_file(path=None, destination_frame="", parse=True, header=(-1, 0, 1), sep="",
col_names=None, col_types=None, na_strings=None):
"""Have H2O import a dataset into memory. The path to the data must be a valid path for
each node in the H2O cluster. If some node in the H2O cluster cannot see the file, then
an exception will be thrown by the H2O cluster. Does a parallel/distributed multi-threaded pull
of the data. Also see upload_file.
Parameters
----------
path : str | list(str)
A path specifying the location of the data to import.
destination_frame : str, optional
The unique hex key assigned to the imported file. If none is given, a key will
automatically be generated.
parse : bool, optional
A logical value indicating whether the file should be parsed after import.
header : int, optional
-1 means the first line is data, 0 means guess, 1 means first line is header.
sep : str, optional
The field separator character. Values on each line of the file are separated by this
character. If sep = "", the parser will automatically detect the separator.
col_names : list, optional
A list of column names for the file.
col_types : list or dict, optional
A list of types or a dictionary of column names to types to specify whether columns
should be forced to a certain type upon import parsing. If a list, the types for
elements that are None will be guessed. The possible types a column may have are:
"unknown" - this will force the column to be parsed as all NA
"uuid" - the values in the column must be true UUID or will be parsed as NA
"string" - force the column to be parsed as a string
"numeric" - force the column to be parsed as numeric. H2O will handle the
compression of the numeric data in the optimal manner.
"enum" - force the column to be parsed as a categorical column.
"time" - force the column to be parsed as a time column. H2O will attempt to
parse the following list of date time formats
date - "yyyy-MM-dd", "yyyy MM dd", "dd-MMM-yy", "dd MMM yy"
time - "HH:mm:ss", "HH:mm:ss:SSS", "HH:mm:ss:SSSnnnnnn", "HH.mm.ss" "HH.mm.ss.SSS",
"HH.mm.ss.SSSnnnnnn"
Times can also contain "AM" or "PM".
na_strings : list or dict, optional
A list of strings, or a list of lists of strings (one list per column), or a
dictionary of column names to strings which are to be interpreted as missing values.
Returns
-------
A new H2OFrame instance.
"""
#assert_is_str(path)
assert_maybe_str(destination_frame)
if not parse:
return lazy_import(path)
return H2OFrame()._import_parse(path, destination_frame, header, sep, col_names,
col_types, na_strings)
[docs]def import_sql_table(connection_url, table, username, password, columns=None, optimize=None):
"""
Import SQL table to H2OFrame in memory. Assumes that the SQL table is not being updated and is stable.
Runs multiple SELECT SQL queries concurrently for parallel ingestion.
Be sure to start the h2o.jar in the terminal with your downloaded JDBC driver in the classpath::
java -cp <path_to_h2o_jar>:<path_to_jdbc_driver_jar> water.H2OApp
Also see h2o.import_sql_select.
Currently supported SQL databases are MySQL, PostgreSQL, and MariaDB. Support for Oracle 12g and Microsoft SQL Server
is forthcoming.
Parameters
----------
connection_url : str
URL of the SQL database connection as specified by the Java Database Connectivity (JDBC) Driver.
For example, "jdbc:mysql://localhost:3306/menagerie?&useSSL=false"
table : str
Name of SQL table
username : str
Username for SQL server
password : str
Password for SQL server
columns : list of strings, optional
A list of column names to import from SQL table. Default is to import all columns.
optimize : bool, optional, default is True
Optimize import of SQL table for faster imports. Experimental.
Returns
-------
H2OFrame containing data of specified SQL table
Examples
--------
>> conn_url = "jdbc:mysql://172.16.2.178:3306/ingestSQL?&useSSL=false"
>> table = "citibike20k"
>> username = "root"
>> password = "abc123"
>> my_citibike_data = h2o.import_sql_table(conn_url, table, username, password)
"""
if columns is not None:
if not isinstance(columns, list): raise ValueError("`columns` must be a list of column names")
columns = ', '.join(columns)
p = {}
p.update({k: v for k, v in locals().items() if k is not "p"})
j = H2OJob(api("POST /99/ImportSQLTable", data=p), "Import SQL Table").poll()
return get_frame(j.dest_key)
[docs]def import_sql_select(connection_url, select_query, username, password, optimize=None):
"""
Imports the SQL table that is the result of the specified SQL query to H2OFrame in memory.
Creates a temporary SQL table from the specified sql_query.
Runs multiple SELECT SQL queries on the temporary table concurrently for parallel ingestion, then drops the table.
Be sure to start the h2o.jar in the terminal with your downloaded JDBC driver in the classpath::
java -cp <path_to_h2o_jar>:<path_to_jdbc_driver_jar> water.H2OApp
Also see h2o.import_sql_table. Currently supported SQL databases are MySQL, PostgreSQL, and MariaDB. Support
for Oracle 12g and Microsoft SQL Server is forthcoming.
Parameters
----------
connection_url : str
URL of the SQL database connection as specified by the Java Database Connectivity (JDBC) Driver.
For example, "jdbc:mysql://localhost:3306/menagerie?&useSSL=false"
select_query : str
SQL query starting with `SELECT` that returns rows from one or more database tables.
username : str
Username for SQL server
password : str
Password for SQL server
optimize : bool, optional, default is True
Optimize import of SQL table for faster imports. Experimental.
Returns
-------
H2OFrame containing data of specified SQL select query
Examples
--------
>>> conn_url = "jdbc:mysql://172.16.2.178:3306/ingestSQL?&useSSL=false"
>>> select_query = "SELECT bikeid from citibike20k"
>>> username = "root"
>>> password = "abc123"
>>> my_citibike_data = h2o.import_sql_select(conn_url, select_query, username, password)
"""
p = {}
p.update({k: v for k, v in locals().items() if k is not "p"})
j = H2OJob(api("POST /99/ImportSQLTable", data=p), "Import SQL Table").poll()
return get_frame(j.dest_key)
[docs]def parse_setup(raw_frames, destination_frame="", header=(-1, 0, 1), separator="", column_names=None,
column_types=None, na_strings=None):
"""During parse setup, the H2O cluster will make several guesses about the attributes of
the data. This method allows a user to perform corrective measures by updating the
returning dictionary from this method. This dictionary is then fed into `parse_raw` to
produce the H2OFrame instance.
Parameters
----------
raw_frames : H2OFrame
A collection of imported file frames
destination_frame : str, optional
The unique hex key assigned to the imported file. If none is given, a key will
automatically be generated.
parse : bool, optional
A logical value indicating whether the file should be parsed after import.
header : int, optional
-1 means the first line is data, 0 means guess, 1 means first line is header.
sep : str, optional
The field separator character. Values on each line of the file are separated by this
character. If sep = "", the parser will automatically detect the separator.
col_names : list, optional
A list of column names for the file.
col_types : list or dict, optional
A list of types or a dictionary of column names to types to specify whether columns
should be forced to a certain type upon import parsing. If a list, the types for
elements that are None will be guessed. The possible types a column may have are:
"unknown" - this will force the column to be parsed as all NA
"uuid" - the values in the column must be true UUID or will be parsed as NA
"string" - force the column to be parsed as a string
"numeric" - force the column to be parsed as numeric. H2O will handle the
compression of the numeric data in the optimal manner.
"enum" - force the column to be parsed as a categorical column.
"time" - force the column to be parsed as a time column. H2O will attempt to
parse the following list of date time formats
date - "yyyy-MM-dd", "yyyy MM dd", "dd-MMM-yy", "dd MMM yy"
time - "HH:mm:ss", "HH:mm:ss:SSS", "HH:mm:ss:SSSnnnnnn", "HH.mm.ss" "HH.mm.ss.SSS",
"HH.mm.ss.SSSnnnnnn"
Times can also contain "AM" or "PM".
na_strings : list or dict, optional
A list of strings, or a list of lists of strings (one list per column), or a
dictionary of column names to strings which are to be interpreted as missing values.
Returns
-------
A dictionary is returned containing all of the guesses made by the H2O back end.
"""
# The H2O backend only accepts things that are quoted
if is_str(raw_frames): raw_frames = [raw_frames]
# temporary dictionary just to pass the following information to the parser: header, separator
kwargs = {}
# set header
if header != (-1, 0, 1):
if header not in (-1, 0, 1): raise ValueError("header should be -1, 0, or 1")
kwargs["check_header"] = header
# set separator
if separator:
if not is_str(separator) or len(separator) != 1:
raise ValueError("separator should be a single character string; got %r" % separator)
kwargs["separator"] = ord(separator)
kwargs["source_frames"] = [quoted(id) for id in raw_frames]
j = api("POST /3/ParseSetup", data=kwargs)
if "warnings" in j and j["warnings"]:
for w in j['warnings']:
warnings.warn(w)
# TODO: really should be url encoding...
if destination_frame: j["destination_frame"] = destination_frame.replace("%", ".").replace("&", ".")
if column_names is not None:
if not isinstance(column_names, list): raise ValueError("col_names should be a list")
if len(column_names) != len(j["column_types"]): raise ValueError(
"length of col_names should be equal to the number of columns")
j["column_names"] = column_names
if column_types is not None:
if isinstance(column_types, dict):
# overwrite dictionary to ordered list of column types. if user didn't specify column type for all names,
# use type provided by backend
if j["column_names"] is None: # no colnames discovered! (C1, C2, ...)
j["column_names"] = gen_header(j["number_columns"])
if not set(column_types.keys()).issubset(set(j["column_names"])): raise ValueError(
"names specified in col_types is not a subset of the column names")
idx = 0
column_types_list = []
for name in j["column_names"]:
if name in column_types:
column_types_list.append(column_types[name])
else:
column_types_list.append(j["column_types"][idx])
idx += 1
column_types = column_types_list
elif isinstance(column_types, list):
if len(column_types) != len(j["column_types"]): raise ValueError(
"length of col_types should be equal to the number of columns")
column_types = [column_types[i] if column_types[i] else j["column_types"][i] for i in
range(len(column_types))]
else: # not dictionary or list
raise ValueError("col_types should be a list of types or a dictionary of column names to types")
j["column_types"] = column_types
if na_strings is not None:
if isinstance(na_strings, dict):
# overwrite dictionary to ordered list of lists of na_strings
if not j["column_names"]: raise ValueError("column names should be specified")
if not set(na_strings.keys()).issubset(set(j["column_names"])): raise ValueError(
"names specified in na_strings is not a subset of the column names")
j["na_strings"] = [[] for _ in range(len(j["column_names"]))]
for name, na in na_strings.items():
idx = j["column_names"].index(name)
if is_str(na): na = [na]
for n in na: j["na_strings"][idx].append(quoted(n))
elif is_list_of_lists(na_strings):
if len(na_strings) != len(j["column_types"]): raise ValueError(
"length of na_strings should be equal to the number of columns")
j["na_strings"] = [[quoted(na) for na in col] if col is not None else [] for col in na_strings]
elif isinstance(na_strings, list):
j["na_strings"] = [[quoted(na) for na in na_strings]] * len(j["column_types"])
else: # not a dictionary or list
raise ValueError(
"na_strings should be a list, a list of lists (one list per column), or a dictionary of column "
"names to strings which are to be interpreted as missing values")
# quote column names and column types also when not specified by user
if j["column_names"]: j["column_names"] = list(map(quoted, j["column_names"]))
j["column_types"] = list(map(quoted, j["column_types"]))
return j
[docs]def parse_raw(setup, id=None, first_line_is_header=(-1, 0, 1)):
"""Used in conjunction with lazy_import and parse_setup in order to make alterations
before parsing.
Parameters
----------
setup : dict
Result of h2o.parse_setup
id : str, optional
An id for the frame.
first_line_is_header : int, optional
-1,0,1 if the first line is to be used as the header
Returns
-------
H2OFrame
"""
if id: setup["destination_frame"] = quoted(id).replace("%", ".").replace("&", ".")
if first_line_is_header != (-1, 0, 1):
if first_line_is_header not in (-1, 0, 1): raise ValueError("first_line_is_header should be -1, 0, or 1")
setup["check_header"] = first_line_is_header
fr = H2OFrame()
fr._parse_raw(setup)
return fr
def assign(data, xid):
if data.frame_id == xid: ValueError("Desination key must differ input frame")
data._ex = ExprNode("assign", xid, data)._eval_driver(False)
data._ex._cache._id = xid
data._ex._children = None
return data
[docs]def get_model(model_id):
"""Return the specified model.
Parameters
----------
model_id : str
The model identification in h2o
Returns
-------
Subclass of H2OEstimator
"""
model_json = api("GET /3/Models/%s" % model_id)["models"][0]
algo = model_json["algo"]
if algo == "svd": m = H2OSVD()
elif algo == "pca": m = H2OPCA()
elif algo == "drf": m = H2ORandomForestEstimator()
elif algo == "naivebayes": m = H2ONaiveBayesEstimator()
elif algo == "kmeans": m = H2OKMeansEstimator()
elif algo == "glrm": m = H2OGeneralizedLowRankEstimator()
elif algo == "glm": m = H2OGeneralizedLinearEstimator()
elif algo == "gbm": m = H2OGradientBoostingEstimator()
elif algo == "deeplearning":
if model_json["output"]["model_category"] == "AutoEncoder":
m = H2OAutoEncoderEstimator()
else:
m = H2ODeepLearningEstimator()
else:
raise ValueError("Unknown algo type: " + algo)
m._resolve_model(model_id, model_json)
return m
[docs]def get_grid(grid_id):
"""Return the specified grid.
Parameters
----------
grid_id : str
The grid identification in h2o
Returns
-------
H2OGridSearch instance
"""
grid_json = api("GET /99/Grids/%s" % grid_id)
models = [get_model(key['name']) for key in grid_json['model_ids']]
# get first model returned in list of models from grid search to get model class (binomial, multinomial, etc)
first_model_json = api("GET /3/Models/%s" % grid_json['model_ids'][0]['name'])['models'][0]
gs = H2OGridSearch(None, {}, grid_id)
gs._resolve_grid(grid_id, grid_json, first_model_json)
gs.models = models
hyper_params = {param: set() for param in gs.hyper_names}
for param in gs.hyper_names:
for model in models:
hyper_params[param].add(model.full_parameters[param]['actual_value'][0])
hyper_params = {str(param): list(vals) for param, vals in hyper_params.items()}
gs.hyper_params = hyper_params
gs.model = model.__class__()
return gs
[docs]def get_frame(frame_id):
"""Obtain a handle to the frame in H2O with the frame_id key.
Returns
-------
H2OFrame
"""
return H2OFrame.get_frame(frame_id)
def ou():
"""Where is my baguette!?
Returns
-------
The name of the baguette. oh uhr uhr huhr
"""
from inspect import stack
return stack()[2][1]
[docs]def no_progress():
"""Disable the progress bar from flushing to stdout. The completed progress bar is
printed when a job is complete so as to demarcate a log file.
"""
H2OJob.__PROGRESS_BAR__ = False
[docs]def show_progress():
"""Enable the progress bar. (Progress bar is enabled by default)."""
H2OJob.__PROGRESS_BAR__ = True
[docs]def log_and_echo(message):
"""Log a message on the server-side logs
This is helpful when running several pieces of work one after the other on a single H2O
cluster and you want to make a notation in the H2O server side log where one piece of
work ends and the next piece of work begins.
Sends a message to H2O for logging. Generally used for debugging purposes.
:param message: (str)message to write to the log.
:return None
"""
if message is None: message = ""
api("POST /3/LogAndEcho", data={"message": str(message)})
[docs]def remove(x):
"""Remove object(s) from H2O.
Parameters
----------
x : H2OFrame, H2OEstimator, or string, or a list/tuple of those things.
The object(s) or unique id(s) pointing to the object(s) to be removed.
"""
if not isinstance(x, (list, tuple)): x = (x,)
for xi in x:
if xi is None:
raise ValueError("h2o.remove with no object is not supported, for your protection")
if isinstance(xi, H2OFrame):
xi_id = xi._ex._cache._id # String or None
if xi_id is None: return # Lazy frame, never evaluated, nothing in cluster
rapids("(rm {})".format(xi_id))
xi._ex = None
elif isinstance(xi, H2OEstimator):
api("DELETE /3/DKV/%s" % xi.model_id)
xi._id = None
elif is_str(xi):
# string may be a Frame key name part of a rapids session... need to call rm thru rapids here
try:
rapids("(rm {})".format(xi))
except:
api("DELETE /3/DKV/%s" % xi)
else:
raise ValueError('input to h2o.remove must one of: H2OFrame, H2OEstimator, or string')
[docs]def remove_all():
"""Remove all objects from H2O."""
api("DELETE /3/DKV")
[docs]def rapids(expr):
"""Execute a Rapids expression.
Parameters
----------
expr : str
The rapids expression (ascii string).
Returns
-------
The JSON response (as a python dictionary) of the Rapids execution
"""
return ExprNode.rapids(expr)
[docs]def ls():
"""List keys on an H2O Cluster."""
return H2OFrame._expr(expr=ExprNode("ls")).as_data_frame(use_pandas=True)
[docs]def frame(frame_id, exclude=""):
"""
Retrieve metadata for an id that points to a Frame.
Parameters
----------
frame_id : str
A pointer to a Frame in H2O.
:returns: dict containing the frame meta-information.
"""
return api("GET /3/Frames/%s" % (frame_id + exclude))
[docs]def frames():
"""Retrieve all the Frames.
:returns: Meta information on the frames
"""
return api("GET /3/Frames")
[docs]def download_pojo(model, path="", get_jar=True):
"""Download the POJO for this model to the directory specified by path (no trailing
slash!). If path is "", then dump to screen.
Parameters
----------
model : H2OModel
Retrieve this model's scoring POJO.
path : str
An absolute path to the directory where POJO should be saved.
get_jar : bool
Retrieve the h2o-genmodel.jar also.
"""
java = api("GET /3/Models.java/%s" % model.model_id)
# HACK: munge model._id so that it conforms to Java class name. For example, change K-means to K_means.
# TODO: clients should extract Java class name from header.
regex = re.compile("[+\\-* !@#$%^&()={}\\[\\]|;:'\"<>,.?/]")
pojoname = regex.sub("_", model.model_id)
filepath = path + "/" + pojoname + ".java"
print("Filepath: {}".format(filepath))
if path == "":
print(java)
else:
with open(filepath, 'wb') as f:
f.write(java.encode("utf-8"))
if get_jar and path != "":
url = h2oconn.make_url("h2o-genmodel.jar")
filename = path + "/" + "h2o-genmodel.jar"
response = urlopen()(url)
with open(filename, "wb") as f:
f.write(response.read())
[docs]def download_csv(data, filename):
"""Download an H2O data set to a CSV file on the local disk.
Warning: Files located on the H2O server may be very large! Make sure you have enough
hard drive space to accommodate the entire file.
Parameters
----------
data : H2OFrame
An H2OFrame object to be downloaded.
filename : str
A string indicating the name that the CSV file should be should be saved to.
"""
if not isinstance(data, H2OFrame):
raise ValueError
url = h2oconn.make_url("DownloadDataset", 3) + "?frame_id={}&hex_string=false".format(data.frame_id)
with open(filename, 'wb') as f:
f.write(urlopen()(url).read())
[docs]def download_all_logs(dirname=".", filename=None):
"""Download H2O Log Files to Disk
Parameters
----------
dirname : str, optional
A character string indicating the directory that the log file should be saved in.
filename : str, optional
A string indicating the name that the CSV file should be
Returns
-------
Path of logs written.
"""
url = "%s/3/Logs/download" % h2oconn.base_url
opener = urlopen()
response = opener(url)
if not os.path.exists(dirname): os.mkdir(dirname)
if filename is None:
if PY3:
headers = [h[1] for h in response.headers._headers]
else:
headers = response.headers.headers
for h in headers:
if 'filename=' in h:
filename = h.split("filename=")[1].strip()
break
path = os.path.join(dirname, filename)
response = opener(url).read()
print("Writing H2O logs to " + path)
with open(path, 'wb') as f:
f.write(response)
return path
[docs]def save_model(model, path="", force=False):
"""Save an H2O Model Object to Disk.
Parameters
----------
model : H2OModel
The model object to save.
path : str
A path to save the model at (hdfs, s3, local)
force : bool
Overwrite destination directory in case it exists or throw exception if set to false.
Returns
-------
The path of the saved model (string)
"""
path = os.path.join(os.getcwd() if path == "" else path, model.model_id)
return api("GET /99/Models.bin/%s" % model.model_id, data={"dir": path, "force": force})["dir"]
[docs]def load_model(path):
"""
Load a saved H2O model from disk.
Parameters
----------
path : str
The full path of the H2O Model to be imported.
Returns
-------
H2OEstimator object
Examples
--------
>> path = h2o.save_mode(my_model,dir=my_path)
>> h2o.load_model(path)
"""
res = api("POST /99/Models.bin/%s" % "", data={"dir": path})
return get_model(res['models'][0]['model_id']['name'])
[docs]def cluster_status():
"""This is possibly confusing because this can come back without warning,
but if a user tries to do any remoteSend, they will get a "cloud sick warning"
Retrieve information on the status of the cluster running H2O.
"""
cluster = api("GET /3/Cloud?skip_ticks=true")
print("Version: %s" % cluster.version)
print("Cloud name: %s" % cluster.cloud_name)
print("Cloud size: %d" % cluster.cloud_size)
if cluster.locked:
print("Cloud is locked")
else:
print("Accepting new members")
if not cluster.nodes:
print("No nodes found")
return
status = []
for node in cluster.nodes:
for k in ["h2o", "healthy", "last_ping", "num_cpus", "sys_load",
"mem_value_size", "free_mem", "pojo_mem", "swap_mem",
"free_disk", "max_disk", "pid", "num_keys", "tcps_active",
"open_fds", "rpcs_active"]:
if k in node:
status.append("%s: %s" % (k, node[k]))
print(", ".join(status))
print()
[docs]def export_file(frame, path, force=False):
"""Export a given H2OFrame to a path on the machine this python session is currently
connected to. To view the current session, call h2o.cluster_info().
Parameters
----------
frame : H2OFrame
The Frame to save to disk.
path : str
The path to the save point on disk.
force : bool
Overwrite any preexisting file with the same path
"""
H2OJob(api("GET /3/Frames/%s/export/%s/overwrite/%s" % (frame.frame_id, path, str(force).lower())),
"Export File").poll()
[docs]def cluster_info():
"""
Display the current H2O cluster information.
"""
h2oconn.info().pprint()
[docs]def shutdown(prompt=True):
"""
Shut down the specified instance. All data will be lost.
This method checks if H2O is running at the specified IP address and port,
and if it is, shuts down that H2O instance.
:param prompt: (bool) A logical value indicating whether to prompt the user before shutting down the H2O server.
"""
h2oconn.shutdown_server(prompt)
[docs]def create_frame(id=None, rows=10000, cols=10, randomize=True, value=0, real_range=100,
categorical_fraction=0.2, factors=100, integer_fraction=0.2, integer_range=100,
binary_fraction=0.1, binary_ones_fraction=0.02, time_fraction=0, string_fraction=0,
missing_fraction=0.01, response_factors=2, has_response=False, seed=None, seed_for_column_types=None):
"""
Data Frame Creation in H2O.
Creates a data frame in H2O with real-valued, categorical, integer,
and binary columns specified by the user.
Parameters
----------
id : str
A string indicating the destination key. If empty, this will be auto-generated
by H2O.
rows : int
The number of rows of data to generate.
cols : int
The number of columns of data to generate. Excludes the response column if
has_response == True.
randomize : bool
A logical value indicating whether data values should be randomly generated.
This must be TRUE if either categorical_fraction or integer_fraction is non-zero.
value : int
If randomize == FALSE, then all real-valued entries will be set to this value.
real_range : float
The range of randomly generated real values.
categorical_fraction : float
The fraction of total columns that are categorical.
factors : int
The number of (unique) factor levels in each categorical column.
integer_fraction : float
The fraction of total columns that are integer-valued.
integer_range : list
The range of randomly generated integer values.
binary_fraction : float
The fraction of total columns that are binary-valued.
binary_ones_fraction : float
The fraction of values in a binary column that are set to 1.
time_fraction : float
The fraction of randomly created date/time columns
string_fraction : float
The fraction of randomly created string columns
missing_fraction : float
The fraction of total entries in the data frame that are set to NA.
response_factors : int
If has_response == TRUE, then this is the number of factor levels in the response
column.
has_response : bool
A logical value indicating whether an additional response column should be
pre-pended to the final H2O data frame. If set to TRUE, the total number
of columns will be cols+1.
seed : int
A seed used to generate random values when randomize = TRUE.
seed_for_column_types : int
A seed used to generate random column types when randomize = TRUE.
Returns
-------
H2OFrame
"""
parms = {"dest": py_tmp_key(append=h2oconn.session_id) if id is None else id,
"rows": rows,
"cols": cols,
"randomize": randomize,
"value": value,
"real_range": real_range,
"categorical_fraction": categorical_fraction,
"factors": factors,
"integer_fraction": integer_fraction,
"integer_range": integer_range,
"binary_fraction": binary_fraction,
"binary_ones_fraction": binary_ones_fraction,
"time_fraction": time_fraction,
"string_fraction": string_fraction,
"missing_fraction": missing_fraction,
"response_factors": response_factors,
"has_response": has_response,
"seed": -1 if seed is None else seed,
"seed_for_column_types": -1 if seed_for_column_types is None else seed_for_column_types,
}
H2OJob(api("POST /3/CreateFrame", data=parms), "Create Frame").poll()
return get_frame(parms["dest"])
[docs]def interaction(data, factors, pairwise, max_factors, min_occurrence, destination_frame=None):
"""
Categorical Interaction Feature Creation in H2O.
Creates a frame in H2O with n-th order interaction features between categorical columns, as specified by
the user.
Parameters
----------
data : H2OFrame
the H2OFrame that holds the target categorical columns.
factors : list
factors Factor columns (either indices or column names).
pairwise : bool
Whether to create pairwise interactions between factors (otherwise create one
higher-order interaction). Only applicable if there are 3 or more factors.
max_factors : int
Max. number of factor levels in pair-wise interaction terms (if enforced, one extra
catch-all factor will be made)
min_occurrence : int
Min. occurrence threshold for factor levels in pair-wise interaction terms
destination_frame : str
A string indicating the destination key. If empty, this will be auto-generated by H2O.
Returns
-------
H2OFrame
"""
factors = [data.names[n] if is_int(n) else n for n in factors]
parms = {"dest": py_tmp_key(append=h2oconn.session_id) if destination_frame is None else destination_frame,
"source_frame": data.frame_id,
"factor_columns": [quoted(f) for f in factors],
"pairwise": pairwise,
"max_factors": max_factors,
"min_occurrence": min_occurrence,
}
H2OJob(api("POST /3/Interaction", data=parms), "Interactions").poll()
return get_frame(parms["dest"])
[docs]def as_list(data, use_pandas=True):
"""Convert an H2O data object into a python-specific object.
WARNING! This will pull all data local!
If Pandas is available (and use_pandas is True), then pandas will be used to parse the
data frame. Otherwise, a list-of-lists populated by character data will be returned (so
the types of data will all be str).
Parameters
----------
data : H2OFrame
An H2O data object.
use_pandas : bool
Try to use pandas for reading in the data.
Returns
-------
List of list (Rows x Columns).
"""
return H2OFrame.as_data_frame(data, use_pandas=use_pandas)
def network_test():
res = api("GET /3/NetworkTest")
res.table.show()
[docs]def set_timezone(tz):
"""Set the Time Zone on the H2O Cloud
Parameters
----------
tz : str
The desired timezone.
"""
ExprNode("setTimeZone", tz)._eager_scalar()
[docs]def get_timezone():
"""Get the Time Zone on the H2O Cloud
Returns
-------
The time zone (string)
"""
return ExprNode("getTimeZone")._eager_scalar()
[docs]def list_timezones():
"""Get a list of all the timezones
Returns
-------
The time zones (as an H2OFrame)
"""
return H2OFrame._expr(expr=ExprNode("listTimeZones"))._frame()
[docs]def demo(funcname, interactive=True, echo=True, test=False):
"""
H2O built-in demo facility.
:param funcname: A string that identifies the h2o python function to demonstrate.
:param interactive: If True, the user will be prompted to continue the demonstration after every segment.
:param echo: If True, the python commands that are executed will be displayed.
:param test: If True, `h2o.init()` will not be called (used for pyunit testing).
Example:
>>> import h2o
>>> h2o.demo("gbm")
"""
import h2o.demos as h2odemo
demo_function = getattr(h2odemo, funcname, None)
if demo_function and type(demo_function) is type(demo):
demo_function(interactive, echo, test)
else:
print("Demo for %s is not available." % funcname)
def data_file(relative_path):
"""Return absolute path to a file within the 'h2o' folder."""
h2o_dir = os.path.split(__file__)[0]
return os.path.join(h2o_dir, relative_path)
[docs]def make_metrics(predicted, actual, domain=None, distribution=None):
"""
Create Model Metrics from predicted and actual values in H2O.
:params H2OFrame predicted: an H2OFrame containing predictions.
:params H2OFrame actuals: an H2OFrame containing actual values.
:params domain: list of response factors for classification.
:params distribution: distribution for regression.
"""
assert_is_type(predicted, H2OFrame)
assert_is_type(actual, H2OFrame)
# assert predicted.ncol == 1, "`predicted` frame should have exactly 1 column"
assert actual.ncol == 1, "`actual` frame should have exactly 1 column"
assert_maybe_str(distribution)
if domain is None and any(actual.isfactor()):
domain = actual.levels()[0]
res = api("POST /3/ModelMetrics/predictions_frame/%s/actuals_frame/%s" % (predicted.frame_id, actual.frame_id),
data={"domain": domain, "distribution": distribution})
return res["model_metrics"]
#-----------------------------------------------------------------------------------------------------------------------
# ALL DEPRECATED METHODS BELOW
#-----------------------------------------------------------------------------------------------------------------------
@h2o_deprecated(import_file)
def import_frame():
"""Deprecated (use import_file)."""
@h2o_deprecated()
def parse():
"""Deprecated (converted to a private method)."""