Modeling In H2O

H2OEstimator

class h2o.estimators.estimator_base.H2OEstimator[source]

Bases: h2o.model.model_base.ModelBase

H2O Estimators

H2O Estimators implement the following methods for model construction:
  • start - Top-level user-facing API for asynchronous model build
  • join - Top-level user-facing API for blocking on async model build
  • train - Top-level user-facing API for model building.
  • fit - Used by scikit-learn.

Because H2OEstimator instances are instances of ModelBase, these objects can use the H2O model API.

fit(X, y=None, **params)[source]

Fit an H2O model as part of a scikit-learn pipeline or grid search.

A warning will be issued if a caller other than sklearn attempts to use this method.

Parameters:

X : H2OFrame

An H2OFrame consisting of the predictor variables.

y
: H2OFrame, optional

An H2OFrame consisting of the response variable.

params
: optional

Extra arguments.

Returns:

The current instance of H2OEstimator for method chaining.

get_params(deep=True)[source]

Useful method for obtaining parameters for this estimator. Used primarily for sklearn Pipelines and sklearn grid search.

Parameters:

deep : bool, optional

If True, return parameters of all sub-objects that are estimators.

Returns:

A dict of parameters

set_params(**parms)[source]

Used by sklearn for updating parameters during grid search.

Parameters:

parms : dict

A dictionary of parameters that will be set on this model.

Returns:

Returns self, the current estimator object with the parameters all set as desired.

start(x, y=None, training_frame=None, offset_column=None, fold_column=None, weights_column=None, validation_frame=None, **params)[source]

Asynchronous model build by specifying the predictor columns, response column, and any additional frame-specific values.

To block for results, call join.

Parameters:

x : list

A list of column names or indices indicating the predictor columns.

y
: str

An index or a column name indicating the response column.

training_frame
: H2OFrame

The H2OFrame having the columns indicated by x and y (as well as any additional columns specified by fold, offset, and weights).

offset_column
: str, optional

The name or index of the column in training_frame that holds the offsets.

fold_column
: str, optional

The name or index of the column in training_frame that holds the per-row fold assignments.

weights_column
: str, optional

The name or index of the column in training_frame that holds the per-row weights.

validation_frame
: H2OFrame, optional

H2OFrame with validation data to be scored on while training.

train(x, y=None, training_frame=None, offset_column=None, fold_column=None, weights_column=None, validation_frame=None, max_runtime_secs=None, **params)[source]

Train the H2O model by specifying the predictor columns, response column, and any additional frame-specific values.

Parameters:

x : list

A list of column names or indices indicating the predictor columns.

y
: str | unicode

An index or a column name indicating the response column.

training_frame
: H2OFrame

The H2OFrame having the columns indicated by x and y (as well as any additional columns specified by fold, offset, and weights).

offset_column
: str, optional

The name or index of the column in training_frame that holds the offsets.

fold_column
: str, optional

The name or index of the column in training_frame that holds the per-row fold assignments.

weights_column
: str, optional

The name or index of the column in training_frame that holds the per-row weights.

validation_frame
: H2OFrame, optional

H2OFrame with validation data to be scored on while training.

max_runtime_secs
: float

Maximum allowed runtime in seconds for model training. Use 0 to disable.

H2ODeepLearningEstimator

class h2o.estimators.deeplearning.H2ODeepLearningEstimator(**kwargs)[source]

Bases: h2o.estimators.estimator_base.H2OEstimator

Deep Learning

Build a supervised Deep Neural Network model Builds a feed-forward multilayer artificial neural network on an H2OFrame

Parameters:

model_id : str

Destination id for this model; auto-generated if not specified.

training_frame
: str

Id of the training data frame (Not required, to allow initial validation of model parameters).

validation_frame
: str

Id of the validation data frame.

nfolds
: int

Number of folds for N-fold cross-validation (0 to disable or ≥ 2). Default: 0

keep_cross_validation_predictions
: bool

Whether to keep the predictions of the cross-validation models. Default: False

keep_cross_validation_fold_assignment
: bool

Whether to keep the cross-validation fold assignment. Default: False

fold_assignment
: “AUTO” | “Random” | “Modulo” | “Stratified”

Cross-validation fold assignment scheme, if fold_column is not specified. The ‘Stratified’ option will stratify the folds based on the response variable, for classification problems. Default: “AUTO”

fold_column
: VecSpecifier

Column with cross-validation fold index assignment per observation.

response_column
: VecSpecifier

Response variable column.

ignored_columns
: list(str)

Names of columns to ignore for training.

ignore_const_cols
: bool

Ignore constant columns. Default: True

score_each_iteration
: bool

Whether to score during each iteration of model training. Default: False

weights_column
: VecSpecifier

Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights are not allowed.

offset_column
: VecSpecifier

Offset column. This will be added to the combination of columns before applying the link function.

balance_classes
: bool

Balance training data class counts via over/under-sampling (for imbalanced data). Default: False

class_sampling_factors
: list(float)

Desired over/under-sampling ratios per class (in lexicographic order). If not specified, sampling factors will be automatically computed to obtain class balance during training. Requires balance_classes.

max_after_balance_size
: float

Maximum relative size of the training data after balancing class counts (can be less than 1.0). Requires balance_classes. Default: 5.0

max_confusion_matrix_size
: int

Maximum size (# classes) for confusion matrices to be printed in the Logs. Default: 20

max_hit_ratio_k
: int

Max. number (top K) of predictions to use for hit ratio computation (for multi-class only, 0 to disable). Default: 0

checkpoint
: str

Model checkpoint to resume training with.

pretrained_autoencoder
: str

Pretrained autoencoder model to initialize this model with.

overwrite_with_best_model
: bool

If enabled, override the final model with the best model found during training. Default: True

use_all_factor_levels
: bool

Use all factor levels of categorical variables. Otherwise, the first factor level is omitted (without loss of accuracy). Useful for variable importances and auto-enabled for autoencoder. Default: True

standardize
: bool

If enabled, automatically standardize the data. If disabled, the user must provide properly scaled input data. Default: True

activation
: “Tanh” | “TanhWithDropout” | “Rectifier” | “RectifierWithDropout” | “Maxout” | “MaxoutWithDropout”

Activation function. Default: “Rectifier”

hidden
: list(int)

Hidden layer sizes (e.g. [100, 100]). Default: [200, 200]

epochs
: float

How many times the dataset should be iterated (streamed), can be fractional. Default: 10.0

train_samples_per_iteration
: int

Number of training samples (globally) per MapReduce iteration. Special values are 0: one epoch, -1: all available data (e.g., replicated training data), -2: automatic. Default: -2

target_ratio_comm_to_comp
: float

Target ratio of communication overhead to computation. Only for multi-node operation and train_samples_per_iteration = -2 (auto-tuning). Default: 0.05

seed
: int

Seed for random numbers (affects sampling) - Note: only reproducible when running single threaded. Default: -1

adaptive_rate
: bool

Adaptive learning rate. Default: True

rho
: float

Adaptive learning rate time decay factor (similarity to prior updates). Default: 0.99

epsilon
: float

Adaptive learning rate smoothing factor (to avoid divisions by zero and allow progress). Default: 1e-08

rate
: float

Learning rate (higher => less stable, lower => slower convergence). Default: 0.005

rate_annealing
: float

Learning rate annealing: rate / (1 + rate_annealing * samples). Default: 1e-06

rate_decay
: float

Learning rate decay factor between layers (N-th layer: rate·rate_decayᴺ⁻¹). Default: 1.0

momentum_start
: float

Initial momentum at the beginning of training (try 0.5). Default: 0.0

momentum_ramp
: float

Number of training samples for which momentum increases. Default: 1000000.0

momentum_stable
: float

Final momentum after the ramp is over (try 0.99). Default: 0.0

nesterov_accelerated_gradient
: bool

Use Nesterov accelerated gradient (recommended). Default: True

input_dropout_ratio
: float

Input layer dropout ratio (can improve generalization, try 0.1 or 0.2). Default: 0.0

hidden_dropout_ratios
: list(float)

Hidden layer dropout ratios (can improve generalization), specify one value per hidden layer, defaults to 0.5.

l1
: float

L1 regularization (can add stability and improve generalization, causes many weights to become 0). Default: 0.0

l2
: float

L2 regularization (can add stability and improve generalization, causes many weights to be small. Default: 0.0

max_w2
: float

Constraint for squared sum of incoming weights per unit (e.g. for Rectifier). Default: ∞

initial_weight_distribution
: “UniformAdaptive” | “Uniform” | “Normal”

Initial weight distribution. Default: “UniformAdaptive”

initial_weight_scale
: float

Uniform: -value...value, Normal: stddev. Default: 1.0

initial_weights
: list(str)

A list of H2OFrame ids to initialize the weight matrices of this model with.

initial_biases
: list(str)

A list of H2OFrame ids to initialize the bias vectors of this model with.

loss
: “Automatic” | “CrossEntropy” | “Quadratic” | “Huber” | “Absolute” | “Quantile”

Loss function. Default: “Automatic”

distribution
: “AUTO” | “bernoulli” | “multinomial” | “gaussian” | “poisson” | “gamma” | “tweedie” | “laplace” |

“quantile” | “huber”

Distribution function Default: “AUTO”

quantile_alpha
: float

Desired quantile for Quantile regression, must be between 0 and 1. Default: 0.5

tweedie_power
: float

Tweedie power for Tweedie regression, must be between 1 and 2. Default: 1.5

huber_alpha
: float

Desired quantile for Huber/M-regression (threshold between quadratic and linear loss, must be between 0 and 1). Default: 0.9

score_interval
: float

Shortest time interval (in seconds) between model scoring. Default: 5.0

score_training_samples
: int

Number of training set samples for scoring (0 for all). Default: 10000

score_validation_samples
: int

Number of validation set samples for scoring (0 for all). Default: 0

score_duty_cycle
: float

Maximum duty cycle fraction for scoring (lower: more training, higher: more scoring). Default: 0.1

classification_stop
: float

Stopping criterion for classification error fraction on training data (-1 to disable). Default: 0.0

regression_stop
: float

Stopping criterion for regression error (MSE) on training data (-1 to disable). Default: 1e-06

stopping_rounds
: int

Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) Default: 5

stopping_metric
: “AUTO” | “deviance” | “logloss” | “MSE” | “AUC” | “lift_top_group” | “r2” | “misclassification”
“mean_per_class_error”

Metric to use for early stopping (AUTO: logloss for classification, deviance for regression) Default: “AUTO”

stopping_tolerance
: float

Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) Default: 0.0

max_runtime_secs
: float

Maximum allowed runtime in seconds for model training. Use 0 to disable. Default: 0.0

score_validation_sampling
: “Uniform” | “Stratified”

Method used to sample validation dataset for scoring. Default: “Uniform”

diagnostics
: bool

Enable diagnostics for hidden layers. Default: True

fast_mode
: bool

Enable fast mode (minor approximation in back-propagation). Default: True

force_load_balance
: bool

Force extra load balancing to increase training speed for small datasets (to keep all cores busy). Default: True

variable_importances
: bool

Compute variable importances for input features (Gedeon method) - can be slow for large networks. Default: False

replicate_training_data
: bool

Replicate the entire training dataset onto every node for faster training on small datasets. Default: True

single_node_mode
: bool

Run on a single node for fine-tuning of model parameters. Default: False

shuffle_training_data
: bool

Enable shuffling of training data (recommended if training data is replicated and train_samples_per_iteration is close to #nodes x #rows, of if using balance_classes). Default: False

missing_values_handling
: “Skip” | “MeanImputation”

Handling of missing values. Either Skip or MeanImputation. Default: “MeanImputation”

quiet_mode
: bool

Enable quiet mode for less output to standard output. Default: False

autoencoder
: bool

Auto-Encoder. Default: False

sparse
: bool

Sparse data handling (more efficient for data with lots of 0 values). Default: False

col_major
: bool

#DEPRECATED Use a column major weight matrix for input layer. Can speed up forward propagation, but might slow down backpropagation. Default: False

average_activation
: float

Average activation for sparse auto-encoder. #Experimental Default: 0.0

sparsity_beta
: float

Sparsity regularization. #Experimental Default: 0.0

max_categorical_features
: int

Max. number of categorical features, enforced via hashing. #Experimental Default: 2147483647

reproducible
: bool

Force reproducibility on small data (will be slow - only uses 1 thread). Default: False

export_weights_and_biases
: bool

Whether to export Neural Network weights and biases to H₂O Frames. Default: False

mini_batch_size
: int

Mini-batch size (smaller leads to better fit, larger can speed up and generalize better). Default: 1

categorical_encoding
: “AUTO” | “Enum” | “OneHotInternal” | “OneHotExplicit” | “Binary” | “Eigen”

Encoding scheme for categorical features Default: “AUTO”

elastic_averaging
: bool

Elastic averaging between compute nodes can improve distributed model convergence. #Experimental Default: False

elastic_averaging_moving_rate
: float

Elastic averaging moving rate (only if elastic averaging is enabled). Default: 0.9

elastic_averaging_regularization
: float

Elastic averaging regularization strength (only if elastic averaging is enabled). Default: 0.001

Examples

>>> import h2o
>>> from h2o.estimators.deeplearning import H2ODeepLearningEstimator
>>> h2o.connect()
>>> rows = [[1,2,3,4,0], [2,1,2,4,1], [2,1,4,2,1], [0,1,2,34,1], [2,3,4,1,0]] * 50
>>> fr = h2o.H2OFrame(rows)
>>> fr[4] = fr[4].asfactor()
>>> model = H2ODeepLearningEstimator()
>>> model.train(x=range(4), y=4, training_frame=fr)

H2OAutoEncoderEstimator

class h2o.estimators.deeplearning.H2OAutoEncoderEstimator(**kwargs)[source]

Bases: h2o.estimators.deeplearning.H2ODeepLearningEstimator

Examples

>>> import h2o as ml
>>> from h2o.estimators.deeplearning import H2OAutoEncoderEstimator
>>> ml.init()
>>> rows = [[1,2,3,4,0]*50, [2,1,2,4,1]*50, [2,1,4,2,1]*50, [0,1,2,34,1]*50, [2,3,4,1,0]*50]
>>> fr = ml.H2OFrame(rows)
>>> fr[4] = fr[4].asfactor()
>>> model = H2OAutoEncoderEstimator()
>>> model.train(x=range(4), training_frame=fr)

H2ORandomForestEstimator

class h2o.estimators.random_forest.H2ORandomForestEstimator(**kwargs)[source]

Bases: h2o.estimators.estimator_base.H2OEstimator

Distributed Random Forest

Parameters:

model_id : str

Destination id for this model; auto-generated if not specified.

training_frame
: str

Id of the training data frame (Not required, to allow initial validation of model parameters).

validation_frame
: str

Id of the validation data frame.

nfolds
: int

Number of folds for N-fold cross-validation (0 to disable or ≥ 2). Default: 0

keep_cross_validation_predictions
: bool

Whether to keep the predictions of the cross-validation models. Default: False

keep_cross_validation_fold_assignment
: bool

Whether to keep the cross-validation fold assignment. Default: False

score_each_iteration
: bool

Whether to score during each iteration of model training. Default: False

score_tree_interval
: int

Score the model after every so many trees. Disabled if set to 0. Default: 0

fold_assignment
: “AUTO” | “Random” | “Modulo” | “Stratified”

Cross-validation fold assignment scheme, if fold_column is not specified. The ‘Stratified’ option will stratify the folds based on the response variable, for classification problems. Default: “AUTO”

fold_column
: VecSpecifier

Column with cross-validation fold index assignment per observation.

response_column
: VecSpecifier

Response variable column.

ignored_columns
: list(str)

Names of columns to ignore for training.

ignore_const_cols
: bool

Ignore constant columns. Default: True

offset_column
: VecSpecifier

Offset column. This will be added to the combination of columns before applying the link function.

weights_column
: VecSpecifier

Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights are not allowed.

balance_classes
: bool

Balance training data class counts via over/under-sampling (for imbalanced data). Default: False

class_sampling_factors
: list(float)

Desired over/under-sampling ratios per class (in lexicographic order). If not specified, sampling factors will be automatically computed to obtain class balance during training. Requires balance_classes.

max_after_balance_size
: float

Maximum relative size of the training data after balancing class counts (can be less than 1.0). Requires balance_classes. Default: 5.0

max_confusion_matrix_size
: int

Maximum size (# classes) for confusion matrices to be printed in the Logs Default: 20

max_hit_ratio_k
: int

Max. number (top K) of predictions to use for hit ratio computation (for multi-class only, 0 to disable) Default: 0

ntrees
: int

Number of trees. Default: 50

max_depth
: int

Maximum tree depth. Default: 20

min_rows
: float

Fewest allowed (weighted) observations in a leaf (in R called ‘nodesize’). Default: 1.0

nbins
: int

For numerical columns (real/int), build a histogram of (at least) this many bins, then split at the best point Default: 20

nbins_top_level
: int

For numerical columns (real/int), build a histogram of (at most) this many bins at the root level, then decrease by factor of two per level Default: 1024

nbins_cats
: int

For categorical columns (factors), build a histogram of this many bins, then split at the best point. Higher values can lead to more overfitting. Default: 1024

r2_stopping
: float

Stop making trees when the R^2 metric equals or exceeds this Default: 1.79769313486e+308

stopping_rounds
: int

Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) Default: 0

stopping_metric
: “AUTO” | “deviance” | “logloss” | “MSE” | “AUC” | “lift_top_group” | “r2” | “misclassification”
“mean_per_class_error”

Metric to use for early stopping (AUTO: logloss for classification, deviance for regression) Default: “AUTO”

stopping_tolerance
: float

Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) Default: 0.001

max_runtime_secs
: float

Maximum allowed runtime in seconds for model training. Use 0 to disable. Default: 0.0

seed
: int

Seed for pseudo random number generator (if applicable) Default: -1

build_tree_one_node
: bool

Run on one node only; no network overhead but fewer cpus used. Suitable for small datasets. Default: False

mtries
: int

Number of variables randomly sampled as candidates at each split. If set to -1, defaults to sqrt{p} for classification and p/3 for regression (where p is the # of predictors Default: -1

sample_rate
: float

Row sample rate per tree (from 0.0 to 1.0) Default: 0.632000029087

sample_rate_per_class
: list(float)

Row sample rate per tree per class (from 0.0 to 1.0)

binomial_double_trees
: bool

For binary classification: Build 2x as many trees (one per class) - can lead to higher accuracy. Default: False

checkpoint
: str

Model checkpoint to resume training with.

col_sample_rate_change_per_level
: float

Relative change of the column sampling rate for every level (from 0.0 to 2.0) Default: 1.0

col_sample_rate_per_tree
: float

Column sample rate per tree (from 0.0 to 1.0) Default: 1.0

min_split_improvement
: float

Minimum relative improvement in squared error reduction for a split to happen Default: 1e-05

histogram_type
: “AUTO” | “UniformAdaptive” | “Random” | “QuantilesGlobal” | “RoundRobin”

What type of histogram to use for finding optimal split points Default: “AUTO”

H2OGradientBoostingEstimator

class h2o.estimators.gbm.H2OGradientBoostingEstimator(**kwargs)[source]

Bases: h2o.estimators.estimator_base.H2OEstimator

Gradient Boosting Method

Builds gradient boosted trees on a parsed data set, for regression or classification. The default distribution function will guess the model type based on the response column type. Otherwise, the response column must be an enum for “bernoulli” or “multinomial”, and numeric for all other distributions.

Parameters:

model_id : str

Destination id for this model; auto-generated if not specified.

training_frame
: str

Id of the training data frame (Not required, to allow initial validation of model parameters).

validation_frame
: str

Id of the validation data frame.

nfolds
: int

Number of folds for N-fold cross-validation (0 to disable or ≥ 2). Default: 0

keep_cross_validation_predictions
: bool

Whether to keep the predictions of the cross-validation models. Default: False

keep_cross_validation_fold_assignment
: bool

Whether to keep the cross-validation fold assignment. Default: False

score_each_iteration
: bool

Whether to score during each iteration of model training. Default: False

score_tree_interval
: int

Score the model after every so many trees. Disabled if set to 0. Default: 0

fold_assignment
: “AUTO” | “Random” | “Modulo” | “Stratified”

Cross-validation fold assignment scheme, if fold_column is not specified. The ‘Stratified’ option will stratify the folds based on the response variable, for classification problems. Default: “AUTO”

fold_column
: VecSpecifier

Column with cross-validation fold index assignment per observation.

response_column
: VecSpecifier

Response variable column.

ignored_columns
: list(str)

Names of columns to ignore for training.

ignore_const_cols
: bool

Ignore constant columns. Default: True

offset_column
: VecSpecifier

Offset column. This will be added to the combination of columns before applying the link function.

weights_column
: VecSpecifier

Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights are not allowed.

balance_classes
: bool

Balance training data class counts via over/under-sampling (for imbalanced data). Default: False

class_sampling_factors
: list(float)

Desired over/under-sampling ratios per class (in lexicographic order). If not specified, sampling factors will be automatically computed to obtain class balance during training. Requires balance_classes.

max_after_balance_size
: float

Maximum relative size of the training data after balancing class counts (can be less than 1.0). Requires balance_classes. Default: 5.0

max_confusion_matrix_size
: int

Maximum size (# classes) for confusion matrices to be printed in the Logs Default: 20

max_hit_ratio_k
: int

Max. number (top K) of predictions to use for hit ratio computation (for multi-class only, 0 to disable) Default: 0

ntrees
: int

Number of trees. Default: 50

max_depth
: int

Maximum tree depth. Default: 5

min_rows
: float

Fewest allowed (weighted) observations in a leaf (in R called ‘nodesize’). Default: 10.0

nbins
: int

For numerical columns (real/int), build a histogram of (at least) this many bins, then split at the best point Default: 20

nbins_top_level
: int

For numerical columns (real/int), build a histogram of (at most) this many bins at the root level, then decrease by factor of two per level Default: 1024

nbins_cats
: int

For categorical columns (factors), build a histogram of this many bins, then split at the best point. Higher values can lead to more overfitting. Default: 1024

r2_stopping
: float

Stop making trees when the R^2 metric equals or exceeds this Default: 1.79769313486e+308

stopping_rounds
: int

Early stopping based on convergence of stopping_metric. Stop if simple moving average of length k of the stopping_metric does not improve for k:=stopping_rounds scoring events (0 to disable) Default: 0

stopping_metric
: “AUTO” | “deviance” | “logloss” | “MSE” | “AUC” | “lift_top_group” | “r2” | “misclassification”
“mean_per_class_error”

Metric to use for early stopping (AUTO: logloss for classification, deviance for regression) Default: “AUTO”

stopping_tolerance
: float

Relative tolerance for metric-based stopping criterion (stop if relative improvement is not at least this much) Default: 0.001

max_runtime_secs
: float

Maximum allowed runtime in seconds for model training. Use 0 to disable. Default: 0.0

seed
: int

Seed for pseudo random number generator (if applicable) Default: -1

build_tree_one_node
: bool

Run on one node only; no network overhead but fewer cpus used. Suitable for small datasets. Default: False

learn_rate
: float

Learning rate (from 0.0 to 1.0) Default: 0.1

learn_rate_annealing
: float

Scale the learning rate by this factor after each tree (e.g., 0.99 or 0.999) Default: 1.0

distribution
: “AUTO” | “bernoulli” | “multinomial” | “gaussian” | “poisson” | “gamma” | “tweedie” | “laplace” |

“quantile” | “huber”

Distribution function Default: “AUTO”

quantile_alpha
: float

Desired quantile for Quantile regression, must be between 0 and 1. Default: 0.5

tweedie_power
: float

Tweedie power for Tweedie regression, must be between 1 and 2. Default: 1.5

huber_alpha
: float

Desired quantile for Huber/M-regression (threshold between quadratic and linear loss, must be between 0 and 1). Default: 0.9

checkpoint
: str

Model checkpoint to resume training with.

sample_rate
: float

Row sample rate per tree (from 0.0 to 1.0) Default: 1.0

sample_rate_per_class
: list(float)

Row sample rate per tree per class (from 0.0 to 1.0)

col_sample_rate
: float

Column sample rate (from 0.0 to 1.0) Default: 1.0

col_sample_rate_change_per_level
: float

Relative change of the column sampling rate for every level (from 0.0 to 2.0) Default: 1.0

col_sample_rate_per_tree
: float

Column sample rate per tree (from 0.0 to 1.0) Default: 1.0

min_split_improvement
: float

Minimum relative improvement in squared error reduction for a split to happen Default: 1e-05

histogram_type
: “AUTO” | “UniformAdaptive” | “Random” | “QuantilesGlobal” | “RoundRobin”

What type of histogram to use for finding optimal split points Default: “AUTO”

max_abs_leafnode_pred
: float

Maximum absolute value of a leaf node prediction Default: 1.79769313486e+308

H2OGeneralizedLinearEstimator

class h2o.estimators.glm.H2OGeneralizedLinearEstimator(**kwargs)[source]

Bases: h2o.estimators.estimator_base.H2OEstimator

Generalized Linear Modeling

Fits a generalized linear model, specified by a response variable, a set of predictors, and a description of the error distribution.

Parameters:

model_id : str

Destination id for this model; auto-generated if not specified.

training_frame
: str

Id of the training data frame (Not required, to allow initial validation of model parameters).

validation_frame
: str

Id of the validation data frame.

nfolds
: int

Number of folds for N-fold cross-validation (0 to disable or ≥ 2). Default: 0

seed
: int

Seed for pseudo random number generator (if applicable) Default: -1

keep_cross_validation_predictions
: bool

Whether to keep the predictions of the cross-validation models. Default: False

keep_cross_validation_fold_assignment
: bool

Whether to keep the cross-validation fold assignment. Default: False

fold_assignment
: “AUTO” | “Random” | “Modulo” | “Stratified”

Cross-validation fold assignment scheme, if fold_column is not specified. The ‘Stratified’ option will stratify the folds based on the response variable, for classification problems. Default: “AUTO”

fold_column
: VecSpecifier

Column with cross-validation fold index assignment per observation.

response_column
: VecSpecifier

Response variable column.

ignored_columns
: list(str)

Names of columns to ignore for training.

ignore_const_cols
: bool

Ignore constant columns. Default: True

score_each_iteration
: bool

Whether to score during each iteration of model training. Default: False

offset_column
: VecSpecifier

Offset column. This will be added to the combination of columns before applying the link function.

weights_column
: VecSpecifier

Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative weights are not allowed.

family
: “gaussian” | “binomial” | “multinomial” | “poisson” | “gamma” | “tweedie”

Family. Use binomial for classification with logistic regression, others are for regression problems. Default: “gaussian”

tweedie_variance_power
: float

Tweedie variance power Default: 0.0

tweedie_link_power
: float

Tweedie link power Default: 1.0

solver
: “AUTO” | “IRLSM” | “L_BFGS” | “COORDINATE_DESCENT_NAIVE” | “COORDINATE_DESCENT”

AUTO will set the solver based on given data and the other parameters. IRLSM is fast on on problems with small number of predictors and for lambda-search with L1 penalty, L_BFGS scales better for datasets with many columns. Coordinate descent is experimental (beta). Default: “AUTO”

alpha
: list(float)

distribution of regularization between L1 and L2.

lambda_
: list(float)

regularization strength

lambda_search
: bool

use lambda search starting at lambda max, given lambda is then interpreted as lambda min Default: False

early_stopping
: bool

stop early when there is no more relative improvement on train or validation (if provided) Default: True

nlambdas
: int

number of lambdas to be used in a search Default: -1

standardize
: bool

Standardize numeric columns to have zero mean and unit variance Default: True

missing_values_handling
: “Skip” | “MeanImputation”

Handling of missing values. Either Skip or MeanImputation. Default: “MeanImputation”

compute_p_values
: bool

request p-values computation, p-values work only with IRLSM solver and no regularization Default: False

remove_collinear_columns
: bool

in case of linearly dependent columns remove some of the dependent columns Default: False

intercept
: bool

include constant term in the model Default: True

non_negative
: bool

Restrict coefficients (not intercept) to be non-negative Default: False

max_iterations
: int

Maximum number of iterations Default: -1

objective_epsilon
: float

converge if objective value changes less than this Default: -1.0

beta_epsilon
: float

converge if beta changes less (using L-infinity norm) than beta esilon, ONLY applies to IRLSM solver Default: 0.0001

gradient_epsilon
: float

converge if objective changes less (using L-infinity norm) than this, ONLY applies to L-BFGS solver Default: -1.0

link : “family_default” | “identity” | “logit” | “log” | “inverse” | “tweedie”

Default: “family_default”

prior
: float

prior probability for y==1. To be used only for logistic regression iff the data has been sampled and the mean of response does not reflect reality. Default: -1.0

lambda_min_ratio
: float

min lambda used in lambda search, specified as a ratio of lambda_max Default: -1.0

beta_constraints
: str

beta constraints

max_active_predictors
: int

Maximum number of active predictors during computation. Use as a stopping criterium to prevent expensive model building with many predictors. Default: -1

interactions
: list(str)

A list of predictor column indices to interact. All pairwise combinations will be computed for the list.

balance_classes
: bool

Balance training data class counts via over/under-sampling (for imbalanced data). Default: False

class_sampling_factors
: list(float)

Desired over/under-sampling ratios per class (in lexicographic order). If not specified, sampling factors will be automatically computed to obtain class balance during training. Requires balance_classes.

max_after_balance_size
: float

Maximum relative size of the training data after balancing class counts (can be less than 1.0). Requires balance_classes. Default: 5.0

max_confusion_matrix_size
: int

Maximum size (# classes) for confusion matrices to be printed in the Logs Default: 20

max_hit_ratio_k
: int

Max. number (top K) of predictions to use for hit ratio computation (for multi-class only, 0 to disable) Default: 0

max_runtime_secs
: float

Maximum allowed runtime in seconds for model training. Use 0 to disable. Default: 0.0

Returns:

A subclass of ModelBase is returned. The specific subclass depends on the machine learning task at hand

(if it’s binomial classification, then an H2OBinomialModel is returned, if it’s regression then a

H2ORegressionModel is returned). The default print-out of the models is shown, but further GLM-specific

information can be queried out of the object. Upon completion of the GLM, the resulting object has

coefficients, normalized coefficients, residual/null deviance, aic, and a host of model metrics including

MSE, AUC (for logistic regression), degrees of freedom, and confusion matrices.

Lambda

[DEPRECATED] Use self.lambda_ instead

static getGLMRegularizationPath(model)[source]

Extract full regularization path explored during lambda search from glm model. @param model - source lambda search model

lambda_

[DEPRECATED] Use self.lambda_ instead

static makeGLMModel(model, coefs, threshold=0.5)[source]

Create a custom GLM model using the given coefficients. Needs to be passed source model trained on the dataset to extract the dataset information from.

@param model - source model, used for extracting dataset information @param coefs - dictionary containing model coefficients @param threshold - (optional, only for binomial) decision threshold used for classification

H2OGeneralizedLowRankEstimator

class h2o.estimators.glrm.H2OGeneralizedLowRankEstimator(**kwargs)[source]

Bases: h2o.estimators.estimator_base.H2OEstimator

Generalized Low Rank Modeling

Builds a generalized low rank model of a H2O dataset.

Parameters:

model_id : str

Destination id for this model; auto-generated if not specified.

training_frame
: str

Id of the training data frame (Not required, to allow initial validation of model parameters).

validation_frame
: str

Id of the validation data frame.

ignored_columns
: list(str)

Names of columns to ignore for training.

ignore_const_cols
: bool

Ignore constant columns. Default: True

score_each_iteration
: bool

Whether to score during each iteration of model training. Default: False

loading_name
: str

Frame key to save resulting X

transform
: “NONE” | “STANDARDIZE” | “NORMALIZE” | “DEMEAN” | “DESCALE”

Transformation of training data Default: “NONE”

k
: int, required

Rank of matrix approximation Default: 1

loss
: “Quadratic” | “Absolute” | “Huber” | “Poisson” | “Hinge” | “Logistic” | “Periodic”

Numeric loss function Default: “Quadratic”

loss_by_col
: list(“Quadratic” | “Absolute” | “Huber” | “Poisson” | “Hinge” | “Logistic” | “Periodic” |

“Categorical” | “Ordinal”)

Loss function by column (override)

loss_by_col_idx
: list(int)

Loss function by column index (override)

multi_loss
: “Categorical” | “Ordinal”

Categorical loss function Default: “Categorical”

period
: int

Length of period (only used with periodic loss function) Default: 1

regularization_x
: “None” | “Quadratic” | “L2” | “L1” | “NonNegative” | “OneSparse” | “UnitOneSparse” | “Simplex”

Regularization function for X matrix Default: “None”

regularization_y
: “None” | “Quadratic” | “L2” | “L1” | “NonNegative” | “OneSparse” | “UnitOneSparse” | “Simplex”

Regularization function for Y matrix Default: “None”

gamma_x
: float

Regularization weight on X matrix Default: 0.0

gamma_y
: float

Regularization weight on Y matrix Default: 0.0

max_iterations
: int

Maximum number of iterations Default: 1000

max_updates
: int

Maximum number of updates Default: 2000

init_step_size
: float

Initial step size Default: 1.0

min_step_size
: float

Minimum step size Default: 0.0001

seed
: int

RNG seed for initialization Default: -1

init
: “Random” | “SVD” | “PlusPlus” | “User”

Initialization mode Default: “PlusPlus”

svd_method
: “GramSVD” | “Power” | “Randomized”

Method for computing SVD during initialization (Caution: Power and Randomized are currently experimental and unstable) Default: “Randomized”

user_y
: str

User-specified initial Y

user_x
: str

User-specified initial X

expand_user_y
: bool

Expand categorical columns in user-specified initial Y Default: True

impute_original
: bool

Reconstruct original training data by reversing transform Default: False

recover_svd
: bool

Recover singular values and eigenvectors of XY Default: False

max_runtime_secs
: float

Maximum allowed runtime in seconds for model training. Use 0 to disable. Default: 0.0

H2OKMeansEstimator

class h2o.estimators.kmeans.H2OKMeansEstimator(**kwargs)[source]

Bases: h2o.estimators.estimator_base.H2OEstimator

K-means

Parameters:

model_id : str

Destination id for this model; auto-generated if not specified.

training_frame
: str

Id of the training data frame (Not required, to allow initial validation of model parameters).

validation_frame
: str

Id of the validation data frame.

nfolds
: int

Number of folds for N-fold cross-validation (0 to disable or ≥ 2). Default: 0

keep_cross_validation_predictions
: bool

Whether to keep the predictions of the cross-validation models. Default: False

keep_cross_validation_fold_assignment
: bool

Whether to keep the cross-validation fold assignment. Default: False

fold_assignment
: “AUTO” | “Random” | “Modulo” | “Stratified”

Cross-validation fold assignment scheme, if fold_column is not specified. The ‘Stratified’ option will stratify the folds based on the response variable, for classification problems. Default: “AUTO”

fold_column
: VecSpecifier

Column with cross-validation fold index assignment per observation.

ignored_columns
: list(str)

Names of columns to ignore for training.

ignore_const_cols
: bool

Ignore constant columns. Default: True

score_each_iteration
: bool

Whether to score during each iteration of model training. Default: False

k
: int, required

Number of clusters Default: 1

user_points
: str

User-specified points

max_iterations
: int

Maximum training iterations Default: 1000

standardize
: bool

Standardize columns Default: True

seed
: int

RNG Seed Default: -1

init
: “Random” | “PlusPlus” | “Furthest” | “User”

Initialization mode Default: “Furthest”

max_runtime_secs
: float

Maximum allowed runtime in seconds for model training. Use 0 to disable. Default: 0.0

H2ONaiveBayesEstimator

class h2o.estimators.naive_bayes.H2ONaiveBayesEstimator(**kwargs)[source]

Bases: h2o.estimators.estimator_base.H2OEstimator

Naive Bayes

The naive Bayes classifier assumes independence between predictor variables conditional on the response, and a Gaussian distribution of numeric predictors with mean and standard deviation computed from the training dataset. When building a naive Bayes classifier, every row in the training dataset that contains at least one NA will be skipped completely. If the test dataset has missing values, then those predictors are omitted in the probability calculation during prediction.

Parameters:

model_id : str

Destination id for this model; auto-generated if not specified.

nfolds
: int

Number of folds for N-fold cross-validation (0 to disable or ≥ 2). Default: 0

seed
: int

Seed for pseudo random number generator (only used for cross-validation and fold_assignment=”Random” or “AUTO”) Default: -1

fold_assignment
: “AUTO” | “Random” | “Modulo” | “Stratified”

Cross-validation fold assignment scheme, if fold_column is not specified. The ‘Stratified’ option will stratify the folds based on the response variable, for classification problems. Default: “AUTO”

fold_column
: VecSpecifier

Column with cross-validation fold index assignment per observation.

keep_cross_validation_predictions
: bool

Whether to keep the predictions of the cross-validation models. Default: False

keep_cross_validation_fold_assignment
: bool

Whether to keep the cross-validation fold assignment. Default: False

training_frame
: str

Id of the training data frame (Not required, to allow initial validation of model parameters).

validation_frame
: str

Id of the validation data frame.

response_column
: VecSpecifier

Response variable column.

ignored_columns
: list(str)

Names of columns to ignore for training.

ignore_const_cols
: bool

Ignore constant columns. Default: True

score_each_iteration
: bool

Whether to score during each iteration of model training. Default: False

balance_classes
: bool

Balance training data class counts via over/under-sampling (for imbalanced data). Default: False

class_sampling_factors
: list(float)

Desired over/under-sampling ratios per class (in lexicographic order). If not specified, sampling factors will be automatically computed to obtain class balance during training. Requires balance_classes.

max_after_balance_size
: float

Maximum relative size of the training data after balancing class counts (can be less than 1.0). Requires balance_classes. Default: 5.0

max_confusion_matrix_size
: int

Maximum size (# classes) for confusion matrices to be printed in the Logs Default: 20

max_hit_ratio_k
: int

Max. number (top K) of predictions to use for hit ratio computation (for multi-class only, 0 to disable) Default: 0

laplace
: float

Laplace smoothing parameter Default: 0.0

min_sdev
: float

Min. standard deviation to use for observations with not enough data Default: 0.001

eps_sdev
: float

Cutoff below which standard deviation is replaced with min_sdev Default: 0.0

min_prob
: float

Min. probability to use for observations with not enough data Default: 0.001

eps_prob
: float

Cutoff below which probability is replaced with min_prob Default: 0.0

compute_metrics
: bool

Compute metrics on training data Default: True

max_runtime_secs
: float

Maximum allowed runtime in seconds for model training. Use 0 to disable. Default: 0.0