``gradient_epsilon``
--------------------

- Available in: GLM
- Hyperparameter: no

Description
~~~~~~~~~~~

GLM includes three criteria outside of ``max_iterations`` that define and check for convergence during logistic regression:

- ``beta_epsilon``: Converge if the beta change is less than this value (or if beta stops changing). This is used by solvers.
- ``gradient_epsilon``: Converge if the gradient value change is less than this value (using L-infinity norm). This is used when ``solver=L-BFGS``.
- ``objective_epsilon``: Converge if the relative objective value changes (for example, (old_val - new_val)/old_val). This is used by all solvers. 

The default for these options is based on a heurisitic:

- The default for ``beta_epsilon`` is 1e-4.
- The default for ``gradient_epsilon`` is 1e-6 if there is no regularization (``lambda=0``) or you are running with lambda search; 1e-4 otherwise.
- The default for ``objective_epsilon`` is 1e-6 if ``lambda=0``; 1e-4 otherwise.

Related Parameters
~~~~~~~~~~~~~~~~~~

- `beta_epsilon <beta_epsilon.html>`__
- `max_iterations <max_iterations.html>`__
- `objective_epsilon <objective_epsilon.html>`__
- `solver <solver.html>`__

Example
~~~~~~~

.. example-code::
   .. code-block:: r

	library(h2o)
	h2o.init()

	# import the boston dataset:
	# this dataset looks at features of the boston suburbs and predicts median housing prices
	# the original dataset can be found at https://archive.ics.uci.edu/ml/datasets/Housing
	boston <- h2o.importFile("https://s3.amazonaws.com/h2o-public-test-data/smalldata/gbm_test/BostonHousing.csv")

	# set the predictor names and the response column name
	predictors <- colnames(boston)[1:13]
	# set the response column to "medv", the median value of owner-occupied homes in $1000's
	response <- "medv"

	# convert the chas column to a factor (chas = Charles River dummy variable (= 1 if tract bounds river; 0 otherwise))
	boston["chas"] <- as.factor(boston["chas"])

	# split into train and validation sets
	boston.splits <- h2o.splitFrame(data =  boston, ratios = .8)
	train <- boston.splits[[1]]
	valid <- boston.splits[[2]]

	# try using the `gradient_epsilon` parameter:
	# train your model, where you specify gradient_epsilon
	boston_glm <- h2o.glm(x = predictors, y = response, training_frame = train,
	                      validation_frame = valid,
	                      gradient_epsilon = 1e-3)

	# print the mse for the validation data
	print(h2o.mse(boston_glm, valid=TRUE))

   .. code-block:: python

	import h2o
	from h2o.estimators.glm import H2OGeneralizedLinearEstimator
	h2o.init()

	# import the boston dataset:
	# this dataset looks at features of the boston suburbs and predicts median housing prices
	# the original dataset can be found at https://archive.ics.uci.edu/ml/datasets/Housing
	boston = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/gbm_test/BostonHousing.csv")

	# set the predictor names and the response column name
	predictors = boston.columns[:-1]
	# set the response column to "medv", the median value of owner-occupied homes in $1000's
	response = "medv"

	# convert the chas column to a factor (chas = Charles River dummy variable (= 1 if tract bounds river; 0 otherwise))
	boston['chas'] = boston['chas'].asfactor()

	# split into train and validation sets
	train, valid = boston.split_frame(ratios = [.8])

	# try using the `gradient_epsilon` parameter:
	# initialize the estimator then train the model
	boston_glm = H2OGeneralizedLinearEstimator(gradient_epsilon = 1e-3)
	boston_glm.train(x = predictors, y = response, training_frame = train, validation_frame = valid)

	# print the mse for validation set
	print(boston_glm.mse(valid=True))