stopping_rounds
¶
- Available in: GBM, DRF, Deep Learning, XGBoost
- Hyperparameter: yes
Description¶
Use this option to stop model training when the option selected for stopping_metric doesn’t improve for this specified number of training rounds, based on a simple moving average. For example, given the following options:
stopping_rounds=3
stopping_metric=misclassification
stopping_tolerance=1e-3
then the model will stop training after reaching three scoring events in a row in which a model’s missclassication value does not improve by 1e-3. These stopping options are used to increase performance by restricting the number of models that get built.
The default value for this option varies depending on the algorithm:
- GBM/DRF:
stopping_rounds
defaults to 0 (disabled) - Deep Learning:
stopping_rounds
defaults to 5
To disable this feature, specify 0. When disabled, the metric is computed on the validation data (if provided); otherwise, training data is used.
When used with Deep Learning, you can also specify the overwrite_with_best_model
option. When enabled, the final model is the best model generated for the given stopping_metric
option.
Keep in mind that stopping_rounds
does not refer to epochs, but more specifically to the number of scoring events (which can only happen after every iteration).
Notes: If cross-validation is enabled:
- All cross-validation models stop training when the validation metric doesn’t improve.
- The main model runs for the mean number of epochs.
- N+1 models do not use
overwrite_with_best_model
, which is an available option in Deep Learning.- N+1 models may be off by the number specified for
stopping_rounds
from the best model, but the cross-validation metric estimates the performance of the main model for the resulting number of epochs (which may be fewer than the specified number of scoring events).stopping_rounds
must be enabled forstopping_metric
orstopping_tolerance
to work.
Example¶
library(h2o)
h2o.init()
# import the airlines dataset:
# This dataset is used to classify whether a flight will be delayed 'YES' or not "NO"
# original data can be found at http://www.transtats.bts.gov/
airlines <- h2o.importFile("http://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip")
# convert columns to factors
airlines["Year"] <- as.factor(airlines["Year"])
airlines["Month"] <- as.factor(airlines["Month"])
airlines["DayOfWeek"] <- as.factor(airlines["DayOfWeek"])
airlines["Cancelled"] <- as.factor(airlines["Cancelled"])
airlines['FlightNum'] <- as.factor(airlines['FlightNum'])
# set the predictor names and the response column name
predictors <- c("Origin", "Dest", "Year", "UniqueCarrier", "DayOfWeek", "Month", "Distance", "FlightNum")
response <- "IsDepDelayed"
# split into train and validation
airlines.splits <- h2o.splitFrame(data = airlines, ratios = .8, seed = 1234)
train <- airlines.splits[[1]]
valid <- airlines.splits[[2]]
# try using the `stopping_rounds` parameter:
# train your model, where you specify the stopping_metric, stopping_rounds,
# and stopping_tolerance
airlines.gbm <- h2o.gbm(x = predictors, y = response, training_frame = train, validation_frame = valid,
stopping_metric = "AUC", stopping_rounds = 3,
stopping_tolerance = 1e-2, seed = 1234)
# print the auc for the validation data
print(h2o.auc(airlines.gbm, valid = TRUE))
import h2o
from h2o.estimators.gbm import H2OGradientBoostingEstimator
h2o.init()
h2o.cluster().show_status()
# import the airlines dataset:
# This dataset is used to classify whether a flight will be delayed 'YES' or not "NO"
# original data can be found at http://www.transtats.bts.gov/
airlines= h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip")
# convert columns to factors
airlines["Year"]= airlines["Year"].asfactor()
airlines["Month"]= airlines["Month"].asfactor()
airlines["DayOfWeek"] = airlines["DayOfWeek"].asfactor()
airlines["Cancelled"] = airlines["Cancelled"].asfactor()
airlines['FlightNum'] = airlines['FlightNum'].asfactor()
# set the predictor names and the response column name
predictors = ["Origin", "Dest", "Year", "UniqueCarrier", "DayOfWeek", "Month", "Distance", "FlightNum"]
response = "IsDepDelayed"
# split into train and validation sets
train, valid= airlines.split_frame(ratios = [.8], seed = 1234)
# try using the `stopping_rounds` parameter:
# train your model, where you specify the stopping_metric, stopping_rounds,
# and stopping_tolerance
# initialize the estimator then train the model
airlines_gbm = H2OGradientBoostingEstimator(stopping_metric = "auc", stopping_rounds = 3,
stopping_tolerance = 1e-2,
seed =1234)
airlines_gbm.train(x = predictors, y = response, training_frame = train, validation_frame = valid)
# print the auc for the validation data
airlines_gbm.auc(valid=True)