Slicing RowsΒΆ
H2O lazily slices out rows of data and will only materialize a shared copy upon IO. This example shows how to slice rows from a frame of data.
> library(h2o)
> h2o.init()
> path <- "http://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_wheader.csv"
> df <- h2o.importFile(path)
# Slice 1 row by index.
> c1 <- df[15,]
> print(c1)
sepal_len sepal_wid petal_len petal_wid class
1 5.8 4 1.2 0.2 Iris-setosa
[1 row x 5 columns]
# Slice a range of rows.
> c1_1 <- df[25:49,]
> print(c1_1)
sepal_len sepal_wid petal_len petal_wid class
1 4.8 3.4 1.9 0.2 Iris-setosa
2 5.0 3.0 1.6 0.2 Iris-setosa
3 5.0 3.4 1.6 0.4 Iris-setosa
4 5.2 3.5 1.5 0.2 Iris-setosa
5 5.2 3.4 1.4 0.2 Iris-setosa
6 4.7 3.2 1.6 0.2 Iris-setosa
[25 rows x 5 columns]
# Slice using a boolean mask. The output dataset will include rows with a sepal length less than 4.6.
> mask <- df[,"sepal_len"] < 4.6
> cols <- df[mask,]
> print(cols)
sepal_len sepal_wid petal_len petal_wid class
1 4.4 2.9 1.4 0.2 Iris-setosa
2 4.3 3.0 1.1 0.1 Iris-setosa
3 4.4 3.0 1.3 0.2 Iris-setosa
4 4.5 2.3 1.3 0.3 Iris-setosa
5 4.4 3.2 1.3 0.2 Iris-setosa
[5 rows x 5 columns]
# Filter out rows that contain missing values in a column. Note the use of '!' to perform a logical not.
> mask <- is.na(df[,"sepal_len"])
> cols <- df[!mask,]
> print(cols)
sepal_len sepal_wid petal_len petal_wid class
1 5.1 3.5 1.4 0.2 Iris-setosa
2 4.9 3.0 1.4 0.2 Iris-setosa
3 4.7 3.2 1.3 0.2 Iris-setosa
4 4.6 3.1 1.5 0.2 Iris-setosa
5 5.0 3.6 1.4 0.2 Iris-setosa
6 5.4 3.9 1.7 0.4 Iris-setosa
[150 rows x 5 columns]
>>> import h2o
>>> h2o.init()
>>> path = "http://h2o-public-test-data.s3.amazonaws.com/smalldata/iris/iris_wheader.csv"
>>> df = h2o.import_file(path=path)
# Slice 1 row by index.
>>> c1 = df[15,:]
>>> c1
sepal_len sepal_wid petal_len petal_wid class
----------- ----------- ----------- ----------- -----------
5.7 4.4 1.5 0.4 Iris-setosa
[1 row x 5 columns]
# Slice a range of rows.
>>> c1_1 = df[range(25,50,1),:]
>>> c1_1
sepal_len sepal_wid petal_len petal_wid class
----------- ----------- ----------- ----------- -----------
5 3 1.6 0.2 Iris-setosa
5 3.4 1.6 0.4 Iris-setosa
5.2 3.5 1.5 0.2 Iris-setosa
5.2 3.4 1.4 0.2 Iris-setosa
4.7 3.2 1.6 0.2 Iris-setosa
4.8 3.1 1.6 0.2 Iris-setosa
5.4 3.4 1.5 0.4 Iris-setosa
5.2 4.1 1.5 0.1 Iris-setosa
5.5 4.2 1.4 0.2 Iris-setosa
4.9 3.1 1.5 0.1 Iris-setosa
[25 rows x 5 columns]
# Slice using a boolean mask. The output dataset will include rows with a sepal length less than 4.6.
>>> mask = df["sepal_len"] < 4.6
>>> cols = df[mask,:]
>>> cols.describe
sepal_len sepal_wid petal_len petal_wid class
----------- ----------- ----------- ----------- -----------
4.4 2.9 1.4 0.2 Iris-setosa
4.3 3 1.1 0.1 Iris-setosa
4.4 3 1.3 0.2 Iris-setosa
4.5 2.3 1.3 0.3 Iris-setosa
4.4 3.2 1.3 0.2 Iris-setosa
[5 rows x 5 columns]
# Filter out rows that contain missing values in a column. Note the use of '~' to perform a logical not.
>>> mask = df["sepal_len"].isna()
>>> cols = df[~mask,:]
>>> cols.describe
>>> cols.describe
sepal_len sepal_wid petal_len petal_wid class
----------- ----------- ----------- ----------- -----------
5.1 3.5 1.4 0.2 Iris-setosa
4.9 3 1.4 0.2 Iris-setosa
4.7 3.2 1.3 0.2 Iris-setosa
4.6 3.1 1.5 0.2 Iris-setosa
5 3.6 1.4 0.2 Iris-setosa
5.4 3.9 1.7 0.4 Iris-setosa
4.6 3.4 1.4 0.3 Iris-setosa
5 3.4 1.5 0.2 Iris-setosa
4.4 2.9 1.4 0.2 Iris-setosa
4.9 3.1 1.5 0.1 Iris-setosa
[150 rows x 5 columns]