Source code for h2o.estimators.aggregator

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
#
# This file is auto-generated by h2o-3/h2o-bindings/bin/gen_python.py
# Copyright 2016 H2O.ai;  Apache License Version 2.0 (see LICENSE for details)
#
from __future__ import absolute_import, division, print_function, unicode_literals

from h2o.estimators.estimator_base import H2OEstimator
from h2o.exceptions import H2OValueError
from h2o.frame import H2OFrame
from h2o.utils.typechecks import assert_is_type, Enum, numeric


[docs]class H2OAggregatorEstimator(H2OEstimator): """ Aggregator """ algo = "aggregator" def __init__(self, **kwargs): super(H2OAggregatorEstimator, self).__init__() self._parms = {} names_list = {"model_id", "training_frame", "response_column", "ignored_columns", "ignore_const_cols", "target_num_exemplars", "rel_tol_num_exemplars", "transform", "categorical_encoding"} if "Lambda" in kwargs: kwargs["lambda_"] = kwargs.pop("Lambda") for pname, pvalue in kwargs.items(): if pname == 'model_id': self._id = pvalue self._parms["model_id"] = pvalue elif pname in names_list: # Using setattr(...) will invoke type-checking of the arguments setattr(self, pname, pvalue) else: raise H2OValueError("Unknown parameter %s = %r" % (pname, pvalue)) @property def training_frame(self): """ Id of the training data frame (Not required, to allow initial validation of model parameters). Type: ``H2OFrame``. """ return self._parms.get("training_frame") @training_frame.setter def training_frame(self, training_frame): assert_is_type(training_frame, None, H2OFrame) self._parms["training_frame"] = training_frame @property def response_column(self): """ Response variable column. Type: ``str``. """ return self._parms.get("response_column") @response_column.setter def response_column(self, response_column): assert_is_type(response_column, None, str) self._parms["response_column"] = response_column @property def ignored_columns(self): """ Names of columns to ignore for training. Type: ``List[str]``. """ return self._parms.get("ignored_columns") @ignored_columns.setter def ignored_columns(self, ignored_columns): assert_is_type(ignored_columns, None, [str]) self._parms["ignored_columns"] = ignored_columns @property def ignore_const_cols(self): """ Ignore constant columns. Type: ``bool`` (default: ``True``). """ return self._parms.get("ignore_const_cols") @ignore_const_cols.setter def ignore_const_cols(self, ignore_const_cols): assert_is_type(ignore_const_cols, None, bool) self._parms["ignore_const_cols"] = ignore_const_cols @property def target_num_exemplars(self): """ Targeted number of exemplars Type: ``int`` (default: ``5000``). """ return self._parms.get("target_num_exemplars") @target_num_exemplars.setter def target_num_exemplars(self, target_num_exemplars): assert_is_type(target_num_exemplars, None, int) self._parms["target_num_exemplars"] = target_num_exemplars @property def rel_tol_num_exemplars(self): """ Relative tolerance for number of exemplars (e.g, 0.5 is +/- 50%) Type: ``float`` (default: ``0.5``). """ return self._parms.get("rel_tol_num_exemplars") @rel_tol_num_exemplars.setter def rel_tol_num_exemplars(self, rel_tol_num_exemplars): assert_is_type(rel_tol_num_exemplars, None, numeric) self._parms["rel_tol_num_exemplars"] = rel_tol_num_exemplars @property def transform(self): """ Transformation of training data One of: ``"none"``, ``"standardize"``, ``"normalize"``, ``"demean"``, ``"descale"`` (default: ``"normalize"``). """ return self._parms.get("transform") @transform.setter def transform(self, transform): assert_is_type(transform, None, Enum("none", "standardize", "normalize", "demean", "descale")) self._parms["transform"] = transform @property def categorical_encoding(self): """ Encoding scheme for categorical features One of: ``"auto"``, ``"enum"``, ``"one_hot_internal"``, ``"one_hot_explicit"``, ``"binary"``, ``"eigen"``, ``"label_encoder"``, ``"sort_by_response"``, ``"enum_limited"`` (default: ``"auto"``). """ return self._parms.get("categorical_encoding") @categorical_encoding.setter def categorical_encoding(self, categorical_encoding): assert_is_type(categorical_encoding, None, Enum("auto", "enum", "one_hot_internal", "one_hot_explicit", "binary", "eigen", "label_encoder", "sort_by_response", "enum_limited")) self._parms["categorical_encoding"] = categorical_encoding