#!/usr/bin/env python
# -*- encoding: utf-8 -*-
#
# This file is auto-generated by h2o-3/h2o-bindings/bin/gen_python.py
# Copyright 2016 H2O.ai;  Apache License Version 2.0 (see LICENSE for details)
#
from __future__ import absolute_import, division, print_function, unicode_literals
from h2o.estimators.estimator_base import H2OEstimator
from h2o.exceptions import H2OValueError
from h2o.frame import H2OFrame
from h2o.utils.typechecks import assert_is_type, Enum, numeric
[docs]class H2OGeneralizedLowRankEstimator(H2OEstimator):
    """
    Generalized Low Rank Modeling
    Builds a generalized low rank model of a H2O dataset.
    """
    algo = "glrm"
    def __init__(self, **kwargs):
        super(H2OGeneralizedLowRankEstimator, self).__init__()
        self._parms = {}
        names_list = {"model_id", "training_frame", "validation_frame", "ignored_columns", "ignore_const_cols",
                      "score_each_iteration", "loading_name", "transform", "k", "loss", "loss_by_col",
                      "loss_by_col_idx", "multi_loss", "period", "regularization_x", "regularization_y", "gamma_x",
                      "gamma_y", "max_iterations", "max_updates", "init_step_size", "min_step_size", "seed", "init",
                      "svd_method", "user_y", "user_x", "expand_user_y", "impute_original", "recover_svd",
                      "max_runtime_secs"}
        if "Lambda" in kwargs: kwargs["lambda_"] = kwargs.pop("Lambda")
        for pname, pvalue in kwargs.items():
            if pname == 'model_id':
                self._id = pvalue
                self._parms["model_id"] = pvalue
            elif pname in names_list:
                # Using setattr(...) will invoke type-checking of the arguments
                setattr(self, pname, pvalue)
            else:
                raise H2OValueError("Unknown parameter %s = %r" % (pname, pvalue))
        self._parms["_rest_version"] = 3
    @property
    def training_frame(self):
        """
        Id of the training data frame (Not required, to allow initial validation of model parameters).
        Type: ``H2OFrame``.
        """
        return self._parms.get("training_frame")
    @training_frame.setter
    def training_frame(self, training_frame):
        assert_is_type(training_frame, None, H2OFrame)
        self._parms["training_frame"] = training_frame
    @property
    def validation_frame(self):
        """
        Id of the validation data frame.
        Type: ``H2OFrame``.
        """
        return self._parms.get("validation_frame")
    @validation_frame.setter
    def validation_frame(self, validation_frame):
        assert_is_type(validation_frame, None, H2OFrame)
        self._parms["validation_frame"] = validation_frame
    @property
    def ignored_columns(self):
        """
        Names of columns to ignore for training.
        Type: ``List[str]``.
        """
        return self._parms.get("ignored_columns")
    @ignored_columns.setter
    def ignored_columns(self, ignored_columns):
        assert_is_type(ignored_columns, None, [str])
        self._parms["ignored_columns"] = ignored_columns
    @property
    def ignore_const_cols(self):
        """
        Ignore constant columns.
        Type: ``bool``  (default: ``True``).
        """
        return self._parms.get("ignore_const_cols")
    @ignore_const_cols.setter
    def ignore_const_cols(self, ignore_const_cols):
        assert_is_type(ignore_const_cols, None, bool)
        self._parms["ignore_const_cols"] = ignore_const_cols
    @property
    def score_each_iteration(self):
        """
        Whether to score during each iteration of model training.
        Type: ``bool``  (default: ``False``).
        """
        return self._parms.get("score_each_iteration")
    @score_each_iteration.setter
    def score_each_iteration(self, score_each_iteration):
        assert_is_type(score_each_iteration, None, bool)
        self._parms["score_each_iteration"] = score_each_iteration
    @property
    def loading_name(self):
        """
        Frame key to save resulting X
        Type: ``str``.
        """
        return self._parms.get("loading_name")
    @loading_name.setter
    def loading_name(self, loading_name):
        assert_is_type(loading_name, None, str)
        self._parms["loading_name"] = loading_name
    @property
    def transform(self):
        """
        Transformation of training data
        One of: ``"none"``, ``"standardize"``, ``"normalize"``, ``"demean"``, ``"descale"``  (default: ``"none"``).
        """
        return self._parms.get("transform")
    @transform.setter
    def transform(self, transform):
        assert_is_type(transform, None, Enum("none", "standardize", "normalize", "demean", "descale"))
        self._parms["transform"] = transform
    @property
    def k(self):
        """
        Rank of matrix approximation
        Type: ``int``  (default: ``1``).
        """
        return self._parms.get("k")
    @k.setter
    def k(self, k):
        assert_is_type(k, None, int)
        self._parms["k"] = k
    @property
    def loss(self):
        """
        Numeric loss function
        One of: ``"quadratic"``, ``"absolute"``, ``"huber"``, ``"poisson"``, ``"hinge"``, ``"logistic"``, ``"periodic"``
        (default: ``"quadratic"``).
        """
        return self._parms.get("loss")
    @loss.setter
    def loss(self, loss):
        assert_is_type(loss, None, Enum("quadratic", "absolute", "huber", "poisson", "hinge", "logistic", "periodic"))
        self._parms["loss"] = loss
    @property
    def loss_by_col(self):
        """
        Loss function by column (override)
        Type: ``List[Enum["quadratic", "absolute", "huber", "poisson", "hinge", "logistic", "periodic", "categorical",
        "ordinal"]]``.
        """
        return self._parms.get("loss_by_col")
    @loss_by_col.setter
    def loss_by_col(self, loss_by_col):
        assert_is_type(loss_by_col, None, [Enum("quadratic", "absolute", "huber", "poisson", "hinge", "logistic", "periodic", "categorical", "ordinal")])
        self._parms["loss_by_col"] = loss_by_col
    @property
    def loss_by_col_idx(self):
        """
        Loss function by column index (override)
        Type: ``List[int]``.
        """
        return self._parms.get("loss_by_col_idx")
    @loss_by_col_idx.setter
    def loss_by_col_idx(self, loss_by_col_idx):
        assert_is_type(loss_by_col_idx, None, [int])
        self._parms["loss_by_col_idx"] = loss_by_col_idx
    @property
    def multi_loss(self):
        """
        Categorical loss function
        One of: ``"categorical"``, ``"ordinal"``  (default: ``"categorical"``).
        """
        return self._parms.get("multi_loss")
    @multi_loss.setter
    def multi_loss(self, multi_loss):
        assert_is_type(multi_loss, None, Enum("categorical", "ordinal"))
        self._parms["multi_loss"] = multi_loss
    @property
    def period(self):
        """
        Length of period (only used with periodic loss function)
        Type: ``int``  (default: ``1``).
        """
        return self._parms.get("period")
    @period.setter
    def period(self, period):
        assert_is_type(period, None, int)
        self._parms["period"] = period
    @property
    def regularization_x(self):
        """
        Regularization function for X matrix
        One of: ``"none"``, ``"quadratic"``, ``"l2"``, ``"l1"``, ``"non_negative"``, ``"one_sparse"``,
        ``"unit_one_sparse"``, ``"simplex"``  (default: ``"none"``).
        """
        return self._parms.get("regularization_x")
    @regularization_x.setter
    def regularization_x(self, regularization_x):
        assert_is_type(regularization_x, None, Enum("none", "quadratic", "l2", "l1", "non_negative", "one_sparse", "unit_one_sparse", "simplex"))
        self._parms["regularization_x"] = regularization_x
    @property
    def regularization_y(self):
        """
        Regularization function for Y matrix
        One of: ``"none"``, ``"quadratic"``, ``"l2"``, ``"l1"``, ``"non_negative"``, ``"one_sparse"``,
        ``"unit_one_sparse"``, ``"simplex"``  (default: ``"none"``).
        """
        return self._parms.get("regularization_y")
    @regularization_y.setter
    def regularization_y(self, regularization_y):
        assert_is_type(regularization_y, None, Enum("none", "quadratic", "l2", "l1", "non_negative", "one_sparse", "unit_one_sparse", "simplex"))
        self._parms["regularization_y"] = regularization_y
    @property
    def gamma_x(self):
        """
        Regularization weight on X matrix
        Type: ``float``  (default: ``0``).
        """
        return self._parms.get("gamma_x")
    @gamma_x.setter
    def gamma_x(self, gamma_x):
        assert_is_type(gamma_x, None, numeric)
        self._parms["gamma_x"] = gamma_x
    @property
    def gamma_y(self):
        """
        Regularization weight on Y matrix
        Type: ``float``  (default: ``0``).
        """
        return self._parms.get("gamma_y")
    @gamma_y.setter
    def gamma_y(self, gamma_y):
        assert_is_type(gamma_y, None, numeric)
        self._parms["gamma_y"] = gamma_y
    @property
    def max_iterations(self):
        """
        Maximum number of iterations
        Type: ``int``  (default: ``1000``).
        """
        return self._parms.get("max_iterations")
    @max_iterations.setter
    def max_iterations(self, max_iterations):
        assert_is_type(max_iterations, None, int)
        self._parms["max_iterations"] = max_iterations
    @property
    def max_updates(self):
        """
        Maximum number of updates, defaults to 2*max_iterations
        Type: ``int``  (default: ``2000``).
        """
        return self._parms.get("max_updates")
    @max_updates.setter
    def max_updates(self, max_updates):
        assert_is_type(max_updates, None, int)
        self._parms["max_updates"] = max_updates
    @property
    def init_step_size(self):
        """
        Initial step size
        Type: ``float``  (default: ``1``).
        """
        return self._parms.get("init_step_size")
    @init_step_size.setter
    def init_step_size(self, init_step_size):
        assert_is_type(init_step_size, None, numeric)
        self._parms["init_step_size"] = init_step_size
    @property
    def min_step_size(self):
        """
        Minimum step size
        Type: ``float``  (default: ``0.0001``).
        """
        return self._parms.get("min_step_size")
    @min_step_size.setter
    def min_step_size(self, min_step_size):
        assert_is_type(min_step_size, None, numeric)
        self._parms["min_step_size"] = min_step_size
    @property
    def seed(self):
        """
        RNG seed for initialization
        Type: ``int``  (default: ``-1``).
        """
        return self._parms.get("seed")
    @seed.setter
    def seed(self, seed):
        assert_is_type(seed, None, int)
        self._parms["seed"] = seed
    @property
    def init(self):
        """
        Initialization mode
        One of: ``"random"``, ``"svd"``, ``"plus_plus"``, ``"user"``  (default: ``"plus_plus"``).
        """
        return self._parms.get("init")
    @init.setter
    def init(self, init):
        assert_is_type(init, None, Enum("random", "svd", "plus_plus", "user"))
        self._parms["init"] = init
    @property
    def svd_method(self):
        """
        Method for computing SVD during initialization (Caution: Randomized is currently experimental and unstable)
        One of: ``"gram_s_v_d"``, ``"power"``, ``"randomized"``  (default: ``"randomized"``).
        """
        return self._parms.get("svd_method")
    @svd_method.setter
    def svd_method(self, svd_method):
        assert_is_type(svd_method, None, Enum("gram_s_v_d", "power", "randomized"))
        self._parms["svd_method"] = svd_method
    @property
    def user_y(self):
        """
        User-specified initial Y
        Type: ``H2OFrame``.
        """
        return self._parms.get("user_y")
    @user_y.setter
    def user_y(self, user_y):
        assert_is_type(user_y, None, H2OFrame)
        self._parms["user_y"] = user_y
    @property
    def user_x(self):
        """
        User-specified initial X
        Type: ``H2OFrame``.
        """
        return self._parms.get("user_x")
    @user_x.setter
    def user_x(self, user_x):
        assert_is_type(user_x, None, H2OFrame)
        self._parms["user_x"] = user_x
    @property
    def expand_user_y(self):
        """
        Expand categorical columns in user-specified initial Y
        Type: ``bool``  (default: ``True``).
        """
        return self._parms.get("expand_user_y")
    @expand_user_y.setter
    def expand_user_y(self, expand_user_y):
        assert_is_type(expand_user_y, None, bool)
        self._parms["expand_user_y"] = expand_user_y
    @property
    def impute_original(self):
        """
        Reconstruct original training data by reversing transform
        Type: ``bool``  (default: ``False``).
        """
        return self._parms.get("impute_original")
    @impute_original.setter
    def impute_original(self, impute_original):
        assert_is_type(impute_original, None, bool)
        self._parms["impute_original"] = impute_original
    @property
    def recover_svd(self):
        """
        Recover singular values and eigenvectors of XY
        Type: ``bool``  (default: ``False``).
        """
        return self._parms.get("recover_svd")
    @recover_svd.setter
    def recover_svd(self, recover_svd):
        assert_is_type(recover_svd, None, bool)
        self._parms["recover_svd"] = recover_svd
    @property
    def max_runtime_secs(self):
        """
        Maximum allowed runtime in seconds for model training. Use 0 to disable.
        Type: ``float``  (default: ``0``).
        """
        return self._parms.get("max_runtime_secs")
    @max_runtime_secs.setter
    def max_runtime_secs(self, max_runtime_secs):
        assert_is_type(max_runtime_secs, None, numeric)
        self._parms["max_runtime_secs"] = max_runtime_secs