Source code for h2o.model.model_base

# -*- encoding: utf-8 -*-
from __future__ import absolute_import, division, print_function, unicode_literals

import os
import traceback
import warnings

import h2o
from h2o.exceptions import H2OValueError
from h2o.job import H2OJob
from h2o.utils.backward_compatibility import backwards_compatible
from h2o.utils.compatibility import *  # NOQA
from h2o.utils.compatibility import viewitems
from h2o.utils.shared_utils import can_use_pandas
from h2o.utils.typechecks import I, assert_is_type, assert_satisfies


[docs]class ModelBase(backwards_compatible()): """Base class for all models.""" def __init__(self): """Construct a new model instance.""" super(ModelBase, self).__init__() self._id = None self._model_json = None self._metrics_class = None self._is_xvalidated = False self._xval_keys = None self._parms = {} # internal, for object recycle self.parms = {} # external self._estimator_type = "unsupervised" self._future = False # used by __repr__/show to query job state self._job = None # used when _future is True self._have_pojo = False self._have_mojo = False @property def model_id(self): """Model identifier.""" return self._id @model_id.setter def model_id(self, newid): oldid = self._id self._id = newid h2o.rapids("(rename '%s' '%s')" % (oldid, newid)) @property def params(self): """ Get the parameters and the actual/default values only. :returns: A dictionary of parameters used to build this model. """ params = {} for p in self.parms: params[p] = {"default": self.parms[p]["default_value"], "actual": self.parms[p]["actual_value"]} return params @property def default_params(self): """Dictionary of the default parameters of the model.""" params = {} for p in self.parms: params[p] = self.parms[p]["default_value"] return params @property def actual_params(self): """Dictionary of actual parameters of the model.""" params_to_select = {"model_id": "name", "response_column": "column_name", "training_frame": "name", "validation_frame": "name"} params = {} for p in self.parms: if p in params_to_select.keys(): params[p] = self.parms[p]["actual_value"].get(params_to_select[p], None) else: params[p] = self.parms[p]["actual_value"] return params @property def full_parameters(self): """Dictionary of the full specification of all parameters.""" return self.parms @property def type(self): """The type of model built: ``"classifier"`` or ``"regressor"`` or ``"unsupervised"``""" return self._estimator_type @property def have_pojo(self): """True, if export to POJO is possible""" return self._have_pojo @property def have_mojo(self): """True, if export to MOJO is possible""" return self._have_mojo def __repr__(self): # PUBDEV-2278: using <method>? from IPython caused everything to dump stk = traceback.extract_stack() if not ("IPython" in stk[-2][0] and "info" == stk[-2][2]): self.show() return ""
[docs] def predict_leaf_node_assignment(self, test_data): """ Predict on a dataset and return the leaf node assignment (only for tree-based models). :param H2OFrame test_data: Data on which to make predictions. :returns: A new H2OFrame of predictions. """ if not isinstance(test_data, h2o.H2OFrame): raise ValueError("test_data must be an instance of H2OFrame") j = h2o.api("POST /3/Predictions/models/%s/frames/%s" % (self.model_id, test_data.frame_id), data={"leaf_node_assignment": True}) return h2o.get_frame(j["predictions_frame"]["name"])
[docs] def predict(self, test_data, custom_metric = None, custom_metric_func = None): """ Predict on a dataset. :param H2OFrame test_data: Data on which to make predictions. :param custom_metric: custom evaluation function defined as class reference, the class get uploaded into cluster :param custom_metric_func: custom evaluation function reference, e.g, result of upload_custom_metric :returns: A new H2OFrame of predictions. """ # Upload evaluation function into DKV if custom_metric: assert_satisfies(custom_metric_func, custom_metric_func is None, "The argument 'eval_func_ref' cannot be specified when eval_func is specified, ") eval_func_ref = h2o.upload_custom_metric(custom_metric) if not isinstance(test_data, h2o.H2OFrame): raise ValueError("test_data must be an instance of H2OFrame") j = H2OJob(h2o.api("POST /4/Predictions/models/%s/frames/%s" % (self.model_id, test_data.frame_id), data = {'custom_metric_func': custom_metric_func}), self._model_json["algo"] + " prediction") j.poll() return h2o.get_frame(j.dest_key)
[docs] def is_cross_validated(self): """Return True if the model was cross-validated.""" return self._is_xvalidated
[docs] def xval_keys(self): """Return model keys for the cross-validated model.""" return self._xval_keys
[docs] def get_xval_models(self, key=None): """ Return a Model object. :param key: If None, return all cross-validated models; otherwise return the model that key points to. :returns: A model or list of models. """ return h2o.get_model(key) if key is not None else [h2o.get_model(k) for k in self._xval_keys]
@property def xvals(self): """ Return a list of the cross-validated models. :returns: A list of models. """ return self.get_xval_models()
[docs] def deepfeatures(self, test_data, layer): """ Return hidden layer details. :param test_data: Data to create a feature space on :param layer: 0 index hidden layer """ if test_data is None: raise ValueError("Must specify test data") if str(layer).isdigit(): j = H2OJob(h2o.api("POST /4/Predictions/models/%s/frames/%s" % (self._id, test_data.frame_id), data={"deep_features_hidden_layer": layer}), "deepfeatures") else: j = H2OJob(h2o.api("POST /4/Predictions/models/%s/frames/%s" % (self._id, test_data.frame_id), data={"deep_features_hidden_layer_name": layer}), "deepfeatures") j.poll() return h2o.get_frame(j.dest_key)
[docs] def weights(self, matrix_id=0): """ Return the frame for the respective weight matrix. :param: matrix_id: an integer, ranging from 0 to number of layers, that specifies the weight matrix to return. :returns: an H2OFrame which represents the weight matrix identified by matrix_id """ num_weight_matrices = len(self._model_json["output"]["weights"]) if matrix_id not in list(range(num_weight_matrices)): raise ValueError( "Weight matrix does not exist. Model has {0} weight matrices (0-based indexing), but matrix {1} " "was requested.".format(num_weight_matrices, matrix_id)) return h2o.get_frame(self._model_json["output"]["weights"][matrix_id]["URL"].split("/")[3])
[docs] def biases(self, vector_id=0): """ Return the frame for the respective bias vector. :param: vector_id: an integer, ranging from 0 to number of layers, that specifies the bias vector to return. :returns: an H2OFrame which represents the bias vector identified by vector_id """ num_bias_vectors = len(self._model_json["output"]["biases"]) if vector_id not in list(range(num_bias_vectors)): raise ValueError( "Bias vector does not exist. Model has {0} bias vectors (0-based indexing), but vector {1} " "was requested.".format(num_bias_vectors, vector_id)) return h2o.get_frame(self._model_json["output"]["biases"][vector_id]["URL"].split("/")[3])
[docs] def normmul(self): """Normalization/Standardization multipliers for numeric predictors.""" return self._model_json["output"]["normmul"]
[docs] def normsub(self): """Normalization/Standardization offsets for numeric predictors.""" return self._model_json["output"]["normsub"]
[docs] def respmul(self): """Normalization/Standardization multipliers for numeric response.""" return self._model_json["output"]["normrespmul"]
[docs] def respsub(self): """Normalization/Standardization offsets for numeric response.""" return self._model_json["output"]["normrespsub"]
[docs] def catoffsets(self): """Categorical offsets for one-hot encoding.""" return self._model_json["output"]["catoffsets"]
[docs] def model_performance(self, test_data=None, train=False, valid=False, xval=False): """ Generate model metrics for this model on test_data. :param H2OFrame test_data: Data set for which model metrics shall be computed against. All three of train, valid and xval arguments are ignored if test_data is not None. :param bool train: Report the training metrics for the model. :param bool valid: Report the validation metrics for the model. :param bool xval: Report the cross-validation metrics for the model. If train and valid are True, then it defaults to True. :returns: An object of class H2OModelMetrics. """ if test_data is None: if not train and not valid and not xval: train = True # default to train if train: return self._model_json["output"]["training_metrics"] if valid: return self._model_json["output"]["validation_metrics"] if xval: return self._model_json["output"]["cross_validation_metrics"] else: # cases dealing with test_data not None if not isinstance(test_data, h2o.H2OFrame): raise ValueError("`test_data` must be of type H2OFrame. Got: " + type(test_data)) res = h2o.api("POST /3/ModelMetrics/models/%s/frames/%s" % (self.model_id, test_data.frame_id)) # FIXME need to do the client-side filtering... (PUBDEV-874) raw_metrics = None for mm in res["model_metrics"]: if mm["frame"] is not None and mm["frame"]["name"] == test_data.frame_id: raw_metrics = mm break return self._metrics_class(raw_metrics, algo=self._model_json["algo"])
[docs] def scoring_history(self): """ Retrieve Model Score History. :returns: The score history as an H2OTwoDimTable or a Pandas DataFrame. """ model = self._model_json["output"] if "scoring_history" in model and model["scoring_history"] is not None: return model["scoring_history"].as_data_frame() print("No score history for this model")
[docs] def cross_validation_metrics_summary(self): """ Retrieve Cross-Validation Metrics Summary. :returns: The cross-validation metrics summary as an H2OTwoDimTable """ model = self._model_json["output"] if "cross_validation_metrics_summary" in model and model["cross_validation_metrics_summary"] is not None: return model["cross_validation_metrics_summary"] print("No cross-validation metrics summary for this model")
[docs] def summary(self): """Print a detailed summary of the model.""" model = self._model_json["output"] if "model_summary" in model and model["model_summary"] is not None: return model["model_summary"] print("No model summary for this model")
[docs] def show(self): """Print innards of model, without regards to type.""" if self._future: self._job.poll_once() return if self._model_json is None: print("No model trained yet") return if self.model_id is None: print("This H2OEstimator has been removed.") return model = self._model_json["output"] print("Model Details") print("=============") print(self.__class__.__name__, ": ", self._model_json["algo_full_name"]) print("Model Key: ", self._id) self.summary() print() # training metrics tm = model["training_metrics"] if tm: tm.show() vm = model["validation_metrics"] if vm: vm.show() xm = model["cross_validation_metrics"] if xm: xm.show() xms = model["cross_validation_metrics_summary"] if xms: xms.show() if "scoring_history" in model and model["scoring_history"]: model["scoring_history"].show() if "variable_importances" in model and model["variable_importances"]: model["variable_importances"].show()
[docs] def varimp(self, use_pandas=False): """ Pretty print the variable importances, or return them in a list. :param use_pandas: If True, then the variable importances will be returned as a pandas data frame. :returns: A list or Pandas DataFrame. """ model = self._model_json["output"] if "variable_importances" in list(model.keys()) and model["variable_importances"]: vals = model["variable_importances"].cell_values header = model["variable_importances"].col_header if use_pandas and can_use_pandas(): import pandas return pandas.DataFrame(vals, columns=header) else: return vals else: print("Warning: This model doesn't have variable importances")
[docs] def residual_deviance(self, train=False, valid=False, xval=None): """ Retreive the residual deviance if this model has the attribute, or None otherwise. :param bool train: Get the residual deviance for the training set. If both train and valid are False, then train is selected by default. :param bool valid: Get the residual deviance for the validation set. If both train and valid are True, then train is selected by default. :returns: Return the residual deviance, or None if it is not present. """ if xval: raise H2OValueError("Cross-validation metrics are not available.") if not train and not valid: train = True if train and valid: train = True if train: return self._model_json["output"]["training_metrics"].residual_deviance() else: return self._model_json["output"]["validation_metrics"].residual_deviance()
[docs] def residual_degrees_of_freedom(self, train=False, valid=False, xval=False): """ Retreive the residual degress of freedom if this model has the attribute, or None otherwise. :param bool train: Get the residual dof for the training set. If both train and valid are False, then train is selected by default. :param bool valid: Get the residual dof for the validation set. If both train and valid are True, then train is selected by default. :returns: Return the residual dof, or None if it is not present. """ if xval: raise H2OValueError("Cross-validation metrics are not available.") if not train and not valid: train = True if train and valid: train = True if train: return self._model_json["output"]["training_metrics"].residual_degrees_of_freedom() else: return self._model_json["output"]["validation_metrics"].residual_degrees_of_freedom()
[docs] def null_deviance(self, train=False, valid=False, xval=False): """ Retreive the null deviance if this model has the attribute, or None otherwise. :param bool train: Get the null deviance for the training set. If both train and valid are False, then train is selected by default. :param bool valid: Get the null deviance for the validation set. If both train and valid are True, then train is selected by default. :returns: Return the null deviance, or None if it is not present. """ if xval: raise H2OValueError("Cross-validation metrics are not available.") if not train and not valid: train = True if train and valid: train = True if train: return self._model_json["output"]["training_metrics"].null_deviance() else: return self._model_json["output"]["validation_metrics"].null_deviance()
[docs] def null_degrees_of_freedom(self, train=False, valid=False, xval=False): """ Retreive the null degress of freedom if this model has the attribute, or None otherwise. :param bool train: Get the null dof for the training set. If both train and valid are False, then train is selected by default. :param bool valid: Get the null dof for the validation set. If both train and valid are True, then train is selected by default. :returns: Return the null dof, or None if it is not present. """ if xval: raise H2OValueError("Cross-validation metrics are not available.") if not train and not valid: train = True if train and valid: train = True if train: return self._model_json["output"]["training_metrics"].null_degrees_of_freedom() else: return self._model_json["output"]["validation_metrics"].null_degrees_of_freedom()
[docs] def pprint_coef(self): """Pretty print the coefficents table (includes normalized coefficients).""" print(self._model_json["output"]["coefficients_table"]) # will return None if no coefs!
[docs] def coef(self): """ Return the coefficients which can be applied to the non-standardized data. Note: standardize = True by default, if set to False then coef() return the coefficients which are fit directly. """ tbl = self._model_json["output"]["coefficients_table"] if tbl is None: return None return {name: coef for name, coef in zip(tbl["names"], tbl["coefficients"])}
[docs] def coef_norm(self): """ Return coefficients fitted on the standardized data (requires standardize = True, which is on by default). These coefficients can be used to evaluate variable importance. """ tbl = self._model_json["output"]["coefficients_table"] if tbl is None: return None return {name: coef for name, coef in zip(tbl["names"], tbl["standardized_coefficients"])}
[docs] def r2(self, train=False, valid=False, xval=False): """ Return the R squared for this regression model. Will return R^2 for GLM Models and will return NaN otherwise. The R^2 value is defined to be 1 - MSE/var, where var is computed as sigma*sigma. If all are False (default), then return the training metric value. If more than one options is set to True, then return a dictionary of metrics where the keys are "train", "valid", and "xval". :param bool train: If train is True, then return the R^2 value for the training data. :param bool valid: If valid is True, then return the R^2 value for the validation data. :param bool xval: If xval is True, then return the R^2 value for the cross validation data. :returns: The R squared for this regression model. """ tm = ModelBase._get_metrics(self, train, valid, xval) m = {} for k, v in viewitems(tm): m[k] = None if v is None else v.r2() return list(m.values())[0] if len(m) == 1 else m
[docs] def mse(self, train=False, valid=False, xval=False): """ Get the Mean Square Error. If all are False (default), then return the training metric value. If more than one options is set to True, then return a dictionary of metrics where the keys are "train", "valid", and "xval". :param bool train: If train is True, then return the MSE value for the training data. :param bool valid: If valid is True, then return the MSE value for the validation data. :param bool xval: If xval is True, then return the MSE value for the cross validation data. :returns: The MSE for this regression model. """ tm = ModelBase._get_metrics(self, train, valid, xval) m = {} for k, v in viewitems(tm): m[k] = None if v is None else v.mse() return list(m.values())[0] if len(m) == 1 else m
[docs] def rmse(self, train=False, valid=False, xval=False): """ Get the Root Mean Square Error. If all are False (default), then return the training metric value. If more than one options is set to True, then return a dictionary of metrics where the keys are "train", "valid", and "xval". :param bool train: If train is True, then return the RMSE value for the training data. :param bool valid: If valid is True, then return the RMSE value for the validation data. :param bool xval: If xval is True, then return the RMSE value for the cross validation data. :returns: The RMSE for this regression model. """ tm = ModelBase._get_metrics(self, train, valid, xval) m = {} for k, v in viewitems(tm): m[k] = None if v is None else v.rmse() return list(m.values())[0] if len(m) == 1 else m
[docs] def mae(self, train=False, valid=False, xval=False): """ Get the Mean Absolute Error. If all are False (default), then return the training metric value. If more than one options is set to True, then return a dictionary of metrics where the keys are "train", "valid", and "xval". :param bool train: If train is True, then return the MAE value for the training data. :param bool valid: If valid is True, then return the MAE value for the validation data. :param bool xval: If xval is True, then return the MAE value for the cross validation data. :returns: The MAE for this regression model. """ tm = ModelBase._get_metrics(self, train, valid, xval) m = {} for k, v in viewitems(tm): m[k] = None if v is None else v.mae() return list(m.values())[0] if len(m) == 1 else m
[docs] def rmsle(self, train=False, valid=False, xval=False): """ Get the Root Mean Squared Logarithmic Error. If all are False (default), then return the training metric value. If more than one options is set to True, then return a dictionary of metrics where the keys are "train", "valid", and "xval". :param bool train: If train is True, then return the RMSLE value for the training data. :param bool valid: If valid is True, then return the RMSLE value for the validation data. :param bool xval: If xval is True, then return the RMSLE value for the cross validation data. :returns: The RMSLE for this regression model. """ tm = ModelBase._get_metrics(self, train, valid, xval) m = {} for k, v in viewitems(tm): m[k] = None if v is None else v.rmsle() return list(m.values())[0] if len(m) == 1 else m
[docs] def logloss(self, train=False, valid=False, xval=False): """ Get the Log Loss. If all are False (default), then return the training metric value. If more than one options is set to True, then return a dictionary of metrics where the keys are "train", "valid", and "xval". :param bool train: If train is True, then return the log loss value for the training data. :param bool valid: If valid is True, then return the log loss value for the validation data. :param bool xval: If xval is True, then return the log loss value for the cross validation data. :returns: The log loss for this regression model. """ tm = ModelBase._get_metrics(self, train, valid, xval) m = {} for k, v in viewitems(tm): m[k] = None if v is None else v.logloss() return list(m.values())[0] if len(m) == 1 else m
[docs] def mean_residual_deviance(self, train=False, valid=False, xval=False): """ Get the Mean Residual Deviances. If all are False (default), then return the training metric value. If more than one options is set to True, then return a dictionary of metrics where the keys are "train", "valid", and "xval". :param bool train: If train is True, then return the Mean Residual Deviance value for the training data. :param bool valid: If valid is True, then return the Mean Residual Deviance value for the validation data. :param bool xval: If xval is True, then return the Mean Residual Deviance value for the cross validation data. :returns: The Mean Residual Deviance for this regression model. """ tm = ModelBase._get_metrics(self, train, valid, xval) m = {} for k, v in viewitems(tm): m[k] = None if v is None else v.mean_residual_deviance() return list(m.values())[0] if len(m) == 1 else m
[docs] def auc(self, train=False, valid=False, xval=False): """ Get the AUC (Area Under Curve). If all are False (default), then return the training metric value. If more than one options is set to True, then return a dictionary of metrics where the keys are "train", "valid", and "xval". :param bool train: If train is True, then return the AUC value for the training data. :param bool valid: If valid is True, then return the AUC value for the validation data. :param bool xval: If xval is True, then return the AUC value for the validation data. :returns: The AUC. """ tm = ModelBase._get_metrics(self, train, valid, xval) m = {} for k, v in viewitems(tm): m[k] = None if v is None else v.auc() return list(m.values())[0] if len(m) == 1 else m
[docs] def aic(self, train=False, valid=False, xval=False): """ Get the AIC (Akaike Information Criterium). If all are False (default), then return the training metric value. If more than one options is set to True, then return a dictionary of metrics where the keys are "train", "valid", and "xval". :param bool train: If train is True, then return the AIC value for the training data. :param bool valid: If valid is True, then return the AIC value for the validation data. :param bool xval: If xval is True, then return the AIC value for the validation data. :returns: The AIC. """ tm = ModelBase._get_metrics(self, train, valid, xval) m = {} for k, v in viewitems(tm): m[k] = None if v is None else v.aic() return list(m.values())[0] if len(m) == 1 else m
[docs] def gini(self, train=False, valid=False, xval=False): """ Get the Gini coefficient. If all are False (default), then return the training metric value. If more than one options is set to True, then return a dictionary of metrics where the keys are "train", "valid", and "xval" :param bool train: If train is True, then return the Gini Coefficient value for the training data. :param bool valid: If valid is True, then return the Gini Coefficient value for the validation data. :param bool xval: If xval is True, then return the Gini Coefficient value for the cross validation data. :returns: The Gini Coefficient for this binomial model. """ tm = ModelBase._get_metrics(self, train, valid, xval) m = {} for k, v in viewitems(tm): m[k] = None if v is None else v.gini() return list(m.values())[0] if len(m) == 1 else m
[docs] def metalearner(self): """Print the metalearner for the model, if any. Currently only used by H2OStackedEnsembleEstimator.""" model = self._model_json["output"] if "metalearner" in model and model["metalearner"] is not None: return model["metalearner"] print("No metalearner for this model")
[docs] def levelone_frame_id(self): """Fetch the levelone_frame_id for the model, if any. Currently only used by H2OStackedEnsembleEstimator.""" model = self._model_json["output"] if "levelone_frame_id" in model and model["levelone_frame_id"] is not None: return model["levelone_frame_id"] print("No levelone_frame_id for this model")
[docs] def download_pojo(self, path="", get_genmodel_jar=False, genmodel_name=""): """ Download the POJO for this model to the directory specified by path. If path is an empty string, then dump the output to screen. :param path: An absolute path to the directory where POJO should be saved. :param get_genmodel_jar: if True, then also download h2o-genmodel.jar and store it in folder ``path``. :param genmodel_name Custom name of genmodel jar :returns: name of the POJO file written. """ assert_is_type(path, str) assert_is_type(get_genmodel_jar, bool) path = path.rstrip("/") return h2o.download_pojo(self, path, get_jar=get_genmodel_jar, jar_name=genmodel_name)
[docs] def download_mojo(self, path=".", get_genmodel_jar=False, genmodel_name=""): """ Download the model in MOJO format. :param path: the path where MOJO file should be saved. :param get_genmodel_jar: if True, then also download h2o-genmodel.jar and store it in folder ``path``. :param genmodel_name Custom name of genmodel jar :returns: name of the MOJO file written. """ assert_is_type(path, str) assert_is_type(get_genmodel_jar, bool) if not self.have_mojo: raise H2OValueError("Export to MOJO not supported") if get_genmodel_jar: if genmodel_name == "": h2o.api("GET /3/h2o-genmodel.jar", save_to=os.path.join(path, "h2o-genmodel.jar")) else: h2o.api("GET /3/h2o-genmodel.jar", save_to=os.path.join(path, genmodel_name)) return h2o.api("GET /3/Models/%s/mojo" % self.model_id, save_to=path)
[docs] def save_mojo(self, path="", force=False): """ Save an H2O Model as MOJO (Model Object, Optimized) to disk. :param model: The model object to save. :param path: a path to save the model at (hdfs, s3, local) :param force: if True overwrite destination directory in case it exists, or throw exception if set to False. :returns str: the path of the saved model """ assert_is_type(path, str) assert_is_type(force, bool) if not self.have_mojo: raise H2OValueError("Export to MOJO not supported") path = os.path.join(os.getcwd() if path == "" else path, self.model_id + ".zip") return h2o.api("GET /99/Models.mojo/%s" % self.model_id, data={"dir": path, "force": force})["dir"]
[docs] def save_model_details(self, path="", force=False): """ Save Model Details of an H2O Model in JSON Format to disk. :param model: The model object to save. :param path: a path to save the model details at (hdfs, s3, local) :param force: if True overwrite destination directory in case it exists, or throw exception if set to False. :returns str: the path of the saved model details """ assert_is_type(path, str) assert_is_type(force, bool) path = os.path.join(os.getcwd() if path == "" else path, self.model_id + ".json") return h2o.api("GET /99/Models/%s/json" % self.model_id, data={"dir": path, "force": force})["dir"]
@staticmethod def _get_metrics(o, train, valid, xval): # noinspection PyProtectedMember output = o._model_json["output"] metrics = {} if train: metrics["train"] = output["training_metrics"] if valid: metrics["valid"] = output["validation_metrics"] if xval: metrics["xval"] = output["cross_validation_metrics"] if len(metrics) == 0: metrics["train"] = output["training_metrics"] return metrics # Delete from cluster as model goes out of scope # def __del__(self): # h2o.remove(self._id) def _plot(self, timestep, metric, server=False): plt = _get_matplotlib_pyplot(server) if not plt: return scoring_history = self.scoring_history() # Separate functionality for GLM since its output is different from other algos if self._model_json["algo"] == "glm": # GLM has only one timestep option, which is `iteration` timestep = "iteration" if metric == "AUTO": metric = "log_likelihood" elif metric not in ("log_likelihood", "objective"): raise H2OValueError("for GLM, metric must be one of: log_likelihood, objective") plt.xlabel(timestep) plt.ylabel(metric) plt.title("Validation Scoring History") plt.plot(scoring_history[timestep], scoring_history[metric]) elif self._model_json["algo"] in ("deeplearning", "deepwater", "xgboost", "drf", "gbm"): # Set timestep if self._model_json["algo"] in ("gbm", "drf", "xgboost"): assert_is_type(timestep, "AUTO", "duration", "number_of_trees") if timestep == "AUTO": timestep = "number_of_trees" else: # self._model_json["algo"] == "deeplearning": # Delete first row of DL scoring history since it contains NAs & NaNs if scoring_history["samples"][0] == 0: scoring_history = scoring_history[1:] assert_is_type(timestep, "AUTO", "epochs", "samples", "duration") if timestep == "AUTO": timestep = "epochs" training_metric = "training_{}".format(metric) validation_metric = "validation_{}".format(metric) if timestep == "duration": dur_colname = "duration_{}".format(scoring_history["duration"][1].split()[1]) scoring_history[dur_colname] = [str(x).split()[0] for x in scoring_history["duration"]] timestep = dur_colname if can_use_pandas(): valid = validation_metric in list(scoring_history) ylim = (scoring_history[[training_metric, validation_metric]].min().min(), scoring_history[[training_metric, validation_metric]].max().max()) if valid \ else (scoring_history[training_metric].min(), scoring_history[training_metric].max()) else: valid = validation_metric in scoring_history.col_header ylim = (min(min(scoring_history[[training_metric, validation_metric]])), max(max(scoring_history[[training_metric, validation_metric]]))) if valid \ else (min(scoring_history[training_metric]), max(scoring_history[training_metric])) if ylim[0] == ylim[1]: ylim = (0, 1) if valid: # Training and validation scoring history plt.xlabel(timestep) plt.ylabel(metric) plt.title("Scoring History") plt.ylim(ylim) plt.plot(scoring_history[timestep], scoring_history[training_metric], label="Training") plt.plot(scoring_history[timestep], scoring_history[validation_metric], color="orange", label="Validation") plt.legend() else: # Training scoring history only plt.xlabel(timestep) plt.ylabel(training_metric) plt.title("Training Scoring History") plt.ylim(ylim) plt.plot(scoring_history[timestep], scoring_history[training_metric]) else: # algo is not glm, deeplearning, drf, gbm, xgboost raise H2OValueError("Plotting not implemented for this type of model") if not server: plt.show()
[docs] def partial_plot(self, data, cols, destination_key=None, nbins=20, plot=True, plot_stddev = True, figsize=(7, 10), server=False): """ Create partial dependence plot which gives a graphical depiction of the marginal effect of a variable on the response. The effect of a variable is measured in change in the mean response. :param H2OFrame data: An H2OFrame object used for scoring and constructing the plot. :param cols: Feature(s) for which partial dependence will be calculated. :param destination_key: An key reference to the created partial dependence tables in H2O. :param nbins: Number of bins used. For categorical columns make sure the number of bins exceed the level count. :param plot: A boolean specifying whether to plot partial dependence table. :param plot_stddev: A boolean specifying whether to add std err to partial dependence plot. :param figsize: Dimension/size of the returning plots, adjust to fit your output cells. :param server: ? :returns: Plot and list of calculated mean response tables for each feature requested. """ if not isinstance(data, h2o.H2OFrame): raise ValueError("data must be an instance of H2OFrame") assert_is_type(cols, [str]) assert_is_type(destination_key, None, str) assert_is_type(nbins, int) assert_is_type(plot, bool) assert_is_type(figsize, (int, int)) # Check cols specified exist in frame data for xi in cols: if xi not in data.names: raise H2OValueError("Column %s does not exist in the training frame" % xi) kwargs = {} kwargs["cols"] = cols kwargs["model_id"] = self.model_id kwargs["frame_id"] = data.frame_id kwargs["nbins"] = nbins kwargs["destination_key"] = destination_key json = H2OJob(h2o.api("POST /3/PartialDependence/", data=kwargs), job_type="PartialDependencePlot").poll() json = h2o.api("GET /3/PartialDependence/%s" % json.dest_key) # Extract partial dependence data from json response pps = json["partial_dependence_data"] # Plot partial dependence plots using matplotlib if plot: plt = _get_matplotlib_pyplot(server) if not plt: return fig, axs = plt.subplots(len(cols), squeeze=False, figsize=figsize) for i, pp in enumerate(pps): # Check weather column was categorical or numeric col = cols[i] cat = data[col].isfactor()[0] upper = [a + b for a, b in zip(pp[1], pp[2]) ] lower = [a - b for a, b in zip(pp[1], pp[2]) ] if cat: labels = pp[0] x = range(len(labels)) y = pp[1] axs[i, 0].plot(x, y, "ro") if plot_stddev: axs[i, 0].plot(x, lower, 'b--') axs[i, 0].plot(x, upper, 'b--') axs[i, 0].set_ylim(min(lower) - 0.1*abs(min(lower)), max(upper) + 0.1*abs(max(upper))) axs[i, 0].set_xticks(x) axs[i, 0].set_xticklabels(labels) axs[i, 0].margins(0.2) else: x = pp[0] y = pp[1] axs[i, 0].plot(x, y, "r-") if plot_stddev: axs[i, 0].plot(x, lower, 'b--') axs[i, 0].plot(x, upper, 'b--') axs[i, 0].set_xlim(min(x), max(x)) axs[i, 0].set_ylim(min(lower) - 0.1*abs(min(lower)), max(upper) + 0.1*abs(max(upper))) axs[i, 0].set_title("Partial Dependence Plot For {}".format(col)) axs[i, 0].set_xlabel(pp.col_header[0]) axs[i, 0].set_ylabel(pp.col_header[1]) axs[i, 0].xaxis.grid() axs[i, 0].yaxis.grid() if len(col) > 1: fig.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0) return pps
[docs] def varimp_plot(self, num_of_features=None, server=False): """ Plot the variable importance for a trained model. :param num_of_features: the number of features shown in the plot (default is 10 or all if less than 10). :param server: ? :returns: None. """ assert_is_type(num_of_features, None, int) assert_is_type(server, bool) plt = _get_matplotlib_pyplot(server) if not plt: return # check if the model is a glm if self._model_json["algo"] == "glm": # print statement to used std_coef_plot(), and use std_coef_plt instead print("Variable importance does not apply to GLM. Will use std_coef_plot() instead.") self.std_coef_plot(num_of_features) return # get the variable importances as a list of tuples, do not use pandas dataframe importances = self.varimp(use_pandas=False) # features labels correspond to the first value of each tuple in the importances list feature_labels = [tup[0] for tup in importances] # relative importances correspond to the first value of each tuple in the importances list scaled_importances = [tup[2] for tup in importances] # specify bar centers on the y axis, but flip the order so largest bar appears at top pos = range(len(feature_labels))[::-1] # specify the bar lengths val = scaled_importances # # check that num_of_features is an integer # if num_of_features is None: # num_of_features = len(val) # default to 10 or less features if num_of_features is not specified if num_of_features is None: num_of_features = min(len(val), 10) fig, ax = plt.subplots(1, 1, figsize=(14, 10)) # create separate plot for the case where num_of_features == 1 if num_of_features == 1: plt.barh(pos[0:num_of_features], val[0:num_of_features], align="center", height=0.8, color="#1F77B4", edgecolor="none") # Hide the right and top spines, color others grey ax.spines["right"].set_visible(False) ax.spines["top"].set_visible(False) ax.spines["bottom"].set_color("#7B7B7B") ax.spines["left"].set_color("#7B7B7B") # Only show ticks on the left and bottom spines ax.yaxis.set_ticks_position("left") ax.xaxis.set_ticks_position("bottom") plt.yticks(pos[0:num_of_features], feature_labels[0:num_of_features]) ax.margins(y=0.5) else: plt.barh(pos[0:num_of_features], val[0:num_of_features], align="center", height=0.8, color="#1F77B4", edgecolor="none") # Hide the right and top spines, color others grey ax.spines["right"].set_visible(False) ax.spines["top"].set_visible(False) ax.spines["bottom"].set_color("#7B7B7B") ax.spines["left"].set_color("#7B7B7B") # Only show ticks on the left and bottom spines ax.yaxis.set_ticks_position("left") ax.xaxis.set_ticks_position("bottom") plt.yticks(pos[0:num_of_features], feature_labels[0:num_of_features]) plt.ylim([min(pos[0:num_of_features])- 1, max(pos[0:num_of_features])+1]) # ax.margins(y=0.5) # check which algorithm was used to select right plot title if self._model_json["algo"] == "gbm": plt.title("Variable Importance: H2O GBM", fontsize=20) if not server: plt.show() elif self._model_json["algo"] == "drf": plt.title("Variable Importance: H2O DRF", fontsize=20) if not server: plt.show() elif self._model_json["algo"] == "xgboost": plt.title("Variable Importance: H2O XGBoost", fontsize=20) if not server: plt.show() # if H2ODeepLearningEstimator has variable_importances == True elif self._model_json["algo"] == "deeplearning": plt.title("Variable Importance: H2O Deep Learning", fontsize=20) if not server: plt.show() else: raise H2OValueError("A variable importances plot is not implemented for this type of model")
[docs] def std_coef_plot(self, num_of_features=None, server=False): """ Plot a GLM model"s standardized coefficient magnitudes. :param num_of_features: the number of features shown in the plot. :param server: ? :returns: None. """ assert_is_type(num_of_features, None, I(int, lambda x: x > 0)) # check that model is a glm if self._model_json["algo"] != "glm": raise H2OValueError("This function is available for GLM models only") plt = _get_matplotlib_pyplot(server) if not plt: return # get unsorted tuple of labels and coefficients unsorted_norm_coef = self.coef_norm().items() # drop intercept value then sort tuples by the coefficient"s absolute value drop_intercept = [tup for tup in unsorted_norm_coef if tup[0] != "Intercept"] norm_coef = sorted(drop_intercept, key=lambda x: abs(x[1]), reverse=True) signage = [] for element in norm_coef: # if positive including zero, color blue, else color orange (use same colors as Flow) if element[1] >= 0: signage.append("#1F77B4") # blue else: signage.append("#FF7F0E") # dark orange # get feature labels and their corresponding magnitudes feature_labels = [tup[0] for tup in norm_coef] norm_coef_magn = [abs(tup[1]) for tup in norm_coef] # specify bar centers on the y axis, but flip the order so largest bar appears at top pos = range(len(feature_labels))[::-1] # specify the bar lengths val = norm_coef_magn # check number of features, default is all the features if num_of_features is None: num_of_features = len(val) # plot horizontal plot fig, ax = plt.subplots(1, 1, figsize=(14, 10)) # create separate plot for the case where num_of_features = 1 if num_of_features == 1: plt.barh(pos[0], val[0], align="center", height=0.8, color=signage[0], edgecolor="none") # Hide the right and top spines, color others grey ax.spines["right"].set_visible(False) ax.spines["top"].set_visible(False) ax.spines["bottom"].set_color("#7B7B7B") ax.spines["left"].set_color("#7B7B7B") # Only show ticks on the left and bottom spines ax.yaxis.set_ticks_position("left") ax.xaxis.set_ticks_position("bottom") plt.yticks([0], feature_labels[0]) ax.margins(y=0.5) else: plt.barh(pos[0:num_of_features], val[0:num_of_features], align="center", height=0.8, color=signage[0:num_of_features], edgecolor="none") # Hide the right and top spines, color others grey ax.spines["right"].set_visible(False) ax.spines["top"].set_visible(False) ax.spines["bottom"].set_color("#7B7B7B") ax.spines["left"].set_color("#7B7B7B") # Only show ticks on the left and bottom spines ax.yaxis.set_ticks_position("left") ax.xaxis.set_ticks_position("bottom") plt.yticks(pos[0:num_of_features], feature_labels[0:num_of_features]) ax.margins(y=0.05) # generate custom fake lines that will be used as legend entries: # check if positive and negative values exist # if positive create positive legend if "#1F77B4" in signage[0:num_of_features] and "#FF7F0E" not in signage[0:num_of_features]: color_ids = {"Positive": "#1F77B4"} markers = [plt.Line2D([0, 0], [0, 0], color=color, marker="s", linestyle="") for color in signage[0:num_of_features]] lgnd = plt.legend(markers, color_ids, numpoints=1, loc="best", frameon=False, fontsize=13) lgnd.legendHandles[0]._legmarker.set_markersize(10) # if neg create neg legend elif "#FF7F0E" in signage[0:num_of_features] and "#1F77B4" not in signage[0:num_of_features]: color_ids = {"Negative": "#FF7F0E"} markers = [plt.Line2D([0, 0], [0, 0], color=color, marker="s", linestyle="") for color in set(signage[0:num_of_features])] lgnd = plt.legend(markers, color_ids, numpoints=1, loc="best", frameon=False, fontsize=13) lgnd.legendHandles[0]._legmarker.set_markersize(10) # if both provide both colors in legend else: color_ids = {"Positive": "#1F77B4", "Negative": "#FF7F0E"} markers = [plt.Line2D([0, 0], [0, 0], color=color, marker="s", linestyle="") for color in set(signage[0:num_of_features])] lgnd = plt.legend(markers, color_ids, numpoints=1, loc="best", frameon=False, fontsize=13) lgnd.legendHandles[0]._legmarker.set_markersize(10) lgnd.legendHandles[1]._legmarker.set_markersize(10) # Hide the right and top spines, color others grey ax.spines["right"].set_visible(False) ax.spines["top"].set_visible(False) ax.spines["bottom"].set_color("#7B7B7B") ax.spines["left"].set_color("#7B7B7B") # Only show ticks on the left and bottom spines # ax.yaxis.set_ticks_position("left") # ax.xaxis.set_ticks_position("bottom") plt.yticks(pos[0:num_of_features], feature_labels[0:num_of_features]) plt.tick_params(axis="x", which="minor", bottom="off", top="off", labelbottom="off") plt.title("Standardized Coef. Magnitudes: H2O GLM", fontsize=20) # plt.axis("tight") # show plot if not server: plt.show()
@staticmethod def _check_targets(y_actual, y_predicted): """Check that y_actual and y_predicted have the same length. :param H2OFrame y_actual: :param H2OFrame y_predicted: :returns: None """ if len(y_actual) != len(y_predicted): raise ValueError("Row mismatch: [{},{}]".format(len(y_actual), len(y_predicted)))
[docs] def cross_validation_models(self): """ Obtain a list of cross-validation models. :returns: list of H2OModel objects. """ cvmodels = self._model_json["output"]["cross_validation_models"] if cvmodels is None: return None m = [] for p in cvmodels: m.append(h2o.get_model(p["name"])) return m
[docs] def cross_validation_predictions(self): """ Obtain the (out-of-sample) holdout predictions of all cross-validation models on their holdout data. Note that the predictions are expanded to the full number of rows of the training data, with 0 fill-in. :returns: list of H2OFrame objects. """ preds = self._model_json["output"]["cross_validation_predictions"] if preds is None: return None m = [] for p in preds: m.append(h2o.get_frame(p["name"])) return m
[docs] def cross_validation_holdout_predictions(self): """ Obtain the (out-of-sample) holdout predictions of all cross-validation models on the training data. This is equivalent to summing up all H2OFrames returned by cross_validation_predictions. :returns: H2OFrame """ preds = self._model_json["output"]["cross_validation_holdout_predictions_frame_id"] if preds is None: return None return h2o.get_frame(preds["name"])
[docs] def cross_validation_fold_assignment(self): """ Obtain the cross-validation fold assignment for all rows in the training data. :returns: H2OFrame """ fid = self._model_json["output"]["cross_validation_fold_assignment_frame_id"] if fid is None: return None return h2o.get_frame(fid["name"])
[docs] def rotation(self): """ Obtain the rotations (eigenvectors) for a PCA model :return: H2OFrame """ if self._model_json["algo"] != "pca": raise H2OValueError("This function is available for PCA models only") return self._model_json["output"]["eigenvectors"]
[docs] def score_history(self): """DEPRECATED. Use :meth:`scoring_history` instead.""" return self.scoring_history()
# Deprecated functions; left here for backward compatibility _bcim = { "giniCoef": lambda self, *args, **kwargs: self.gini(*args, **kwargs), }
def _get_matplotlib_pyplot(server): try: # noinspection PyUnresolvedReferences import matplotlib if server: matplotlib.use("Agg", warn=False) # noinspection PyUnresolvedReferences import matplotlib.pyplot as plt return plt except ImportError: print("`matplotlib` library is required for this function!") return None