#!/usr/bin/env python
# -*- encoding: utf-8 -*-
#
# This file is auto-generated by h2o-3/h2o-bindings/bin/gen_python.py
# Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details)
#
from __future__ import absolute_import, division, print_function, unicode_literals
from h2o.estimators.estimator_base import H2OEstimator
from h2o.exceptions import H2OValueError
from h2o.frame import H2OFrame
from h2o.utils.typechecks import assert_is_type, Enum, numeric
[docs]class H2OPrincipalComponentAnalysisEstimator(H2OEstimator):
"""
Principal Components Analysis
"""
algo = "pca"
def __init__(self, **kwargs):
super(H2OPrincipalComponentAnalysisEstimator, self).__init__()
self._parms = {}
names_list = {"model_id", "training_frame", "validation_frame", "ignored_columns", "ignore_const_cols",
"score_each_iteration", "transform", "pca_method", "k", "max_iterations", "use_all_factor_levels",
"compute_metrics", "impute_missing", "seed", "max_runtime_secs"}
if "Lambda" in kwargs: kwargs["lambda_"] = kwargs.pop("Lambda")
for pname, pvalue in kwargs.items():
if pname == 'model_id':
self._id = pvalue
self._parms["model_id"] = pvalue
elif pname in names_list:
# Using setattr(...) will invoke type-checking of the arguments
setattr(self, pname, pvalue)
else:
raise H2OValueError("Unknown parameter %s = %r" % (pname, pvalue))
@property
def training_frame(self):
"""
Id of the training data frame.
Type: ``H2OFrame``.
"""
return self._parms.get("training_frame")
@training_frame.setter
def training_frame(self, training_frame):
assert_is_type(training_frame, None, H2OFrame)
self._parms["training_frame"] = training_frame
@property
def validation_frame(self):
"""
Id of the validation data frame.
Type: ``H2OFrame``.
"""
return self._parms.get("validation_frame")
@validation_frame.setter
def validation_frame(self, validation_frame):
assert_is_type(validation_frame, None, H2OFrame)
self._parms["validation_frame"] = validation_frame
@property
def ignored_columns(self):
"""
Names of columns to ignore for training.
Type: ``List[str]``.
"""
return self._parms.get("ignored_columns")
@ignored_columns.setter
def ignored_columns(self, ignored_columns):
assert_is_type(ignored_columns, None, [str])
self._parms["ignored_columns"] = ignored_columns
@property
def ignore_const_cols(self):
"""
Ignore constant columns.
Type: ``bool`` (default: ``True``).
"""
return self._parms.get("ignore_const_cols")
@ignore_const_cols.setter
def ignore_const_cols(self, ignore_const_cols):
assert_is_type(ignore_const_cols, None, bool)
self._parms["ignore_const_cols"] = ignore_const_cols
@property
def score_each_iteration(self):
"""
Whether to score during each iteration of model training.
Type: ``bool`` (default: ``False``).
"""
return self._parms.get("score_each_iteration")
@score_each_iteration.setter
def score_each_iteration(self, score_each_iteration):
assert_is_type(score_each_iteration, None, bool)
self._parms["score_each_iteration"] = score_each_iteration
@property
def transform(self):
"""
Transformation of training data
One of: ``"none"``, ``"standardize"``, ``"normalize"``, ``"demean"``, ``"descale"`` (default: ``"none"``).
"""
return self._parms.get("transform")
@transform.setter
def transform(self, transform):
assert_is_type(transform, None, Enum("none", "standardize", "normalize", "demean", "descale"))
self._parms["transform"] = transform
@property
def pca_method(self):
"""
Method for computing PCA (Caution: GLRM is currently experimental and unstable)
One of: ``"gram_s_v_d"``, ``"power"``, ``"randomized"``, ``"glrm"`` (default: ``"gram_s_v_d"``).
"""
return self._parms.get("pca_method")
@pca_method.setter
def pca_method(self, pca_method):
assert_is_type(pca_method, None, Enum("gram_s_v_d", "power", "randomized", "glrm"))
self._parms["pca_method"] = pca_method
@property
def k(self):
"""
Rank of matrix approximation
Type: ``int`` (default: ``1``).
"""
return self._parms.get("k")
@k.setter
def k(self, k):
assert_is_type(k, None, int)
self._parms["k"] = k
@property
def max_iterations(self):
"""
Maximum training iterations
Type: ``int`` (default: ``1000``).
"""
return self._parms.get("max_iterations")
@max_iterations.setter
def max_iterations(self, max_iterations):
assert_is_type(max_iterations, None, int)
self._parms["max_iterations"] = max_iterations
@property
def use_all_factor_levels(self):
"""
Whether first factor level is included in each categorical expansion
Type: ``bool`` (default: ``False``).
"""
return self._parms.get("use_all_factor_levels")
@use_all_factor_levels.setter
def use_all_factor_levels(self, use_all_factor_levels):
assert_is_type(use_all_factor_levels, None, bool)
self._parms["use_all_factor_levels"] = use_all_factor_levels
@property
def compute_metrics(self):
"""
Whether to compute metrics on the training data
Type: ``bool`` (default: ``True``).
"""
return self._parms.get("compute_metrics")
@compute_metrics.setter
def compute_metrics(self, compute_metrics):
assert_is_type(compute_metrics, None, bool)
self._parms["compute_metrics"] = compute_metrics
@property
def impute_missing(self):
"""
Whether to impute missing entries with the column mean
Type: ``bool`` (default: ``False``).
"""
return self._parms.get("impute_missing")
@impute_missing.setter
def impute_missing(self, impute_missing):
assert_is_type(impute_missing, None, bool)
self._parms["impute_missing"] = impute_missing
@property
def seed(self):
"""
RNG seed for initialization
Type: ``int`` (default: ``-1``).
"""
return self._parms.get("seed")
@seed.setter
def seed(self, seed):
assert_is_type(seed, None, int)
self._parms["seed"] = seed
@property
def max_runtime_secs(self):
"""
Maximum allowed runtime in seconds for model training. Use 0 to disable.
Type: ``float`` (default: ``0``).
"""
return self._parms.get("max_runtime_secs")
@max_runtime_secs.setter
def max_runtime_secs(self, max_runtime_secs):
assert_is_type(max_runtime_secs, None, numeric)
self._parms["max_runtime_secs"] = max_runtime_secs