Builds an Aggregated Frame of an H2OFrame.
h2o.aggregator(training_frame, x, model_id = NULL, ignore_const_cols = TRUE, target_num_exemplars = 5000, rel_tol_num_exemplars = 0.5, transform = c("NONE", "STANDARDIZE", "NORMALIZE", "DEMEAN", "DESCALE"), categorical_encoding = c("AUTO", "Enum", "OneHotInternal", "OneHotExplicit", "Binary", "Eigen", "LabelEncoder", "SortByResponse", "EnumLimited"), save_mapping_frame = FALSE)
training_frame | Id of the training data frame. |
---|---|
x | A vector containing the |
model_id | Destination id for this model; auto-generated if not specified. |
ignore_const_cols |
|
target_num_exemplars | Targeted number of exemplars Defaults to 5000. |
rel_tol_num_exemplars | Relative tolerance for number of exemplars (e.g, 0.5 is +/- 50 percents) Defaults to 0.5. |
transform | Transformation of training data Must be one of: "NONE", "STANDARDIZE", "NORMALIZE", "DEMEAN", "DESCALE". Defaults to NORMALIZE. |
categorical_encoding | Encoding scheme for categorical features Must be one of: "AUTO", "Enum", "OneHotInternal", "OneHotExplicit", "Binary", "Eigen", "LabelEncoder", "SortByResponse", "EnumLimited". Defaults to AUTO. |
save_mapping_frame |
|
# NOT RUN { library(h2o) h2o.init() df <- h2o.createFrame(rows=100, cols=5, categorical_fraction=0.6, integer_fraction=0, binary_fraction=0, real_range=100, integer_range=100, missing_fraction=0) target_num_exemplars=1000 rel_tol_num_exemplars=0.5 encoding="Eigen" agg <- h2o.aggregator(training_frame=df, target_num_exemplars=target_num_exemplars, rel_tol_num_exemplars=rel_tol_num_exemplars, categorical_encoding=encoding) # }