``quantile_alpha`` ------------------ - Available in: GBM, Deep Learning - Hyperparameter: yes Description ~~~~~~~~~~~ The ``quantile_alpha`` parameter value defines the desired quantile when performing quantile regression. Used in combination with ``distribution = quantile``, ``quantile_alpha`` activates the quantile loss function. For example, if you want to predict the 80th percentile of the response column’s value, then you can specify ``quantile_alpha=0.8``. The ``quantile_alpha`` value defaults to 0.5 (i.e., the median value, essentially the same as specifying ``distribution=laplace``). Related Parameters ~~~~~~~~~~~~~~~~~~ - `distribution `__ Example ~~~~~~~ .. example-code:: .. code-block:: r library(h2o) h2o.init() # import the boston dataset: # this dataset looks at features of the boston suburbs and predicts median housing prices # the original dataset can be found at https://archive.ics.uci.edu/ml/datasets/Housing boston <- h2o.importFile("https://s3.amazonaws.com/h2o-public-test-data/smalldata/gbm_test/BostonHousing.csv") # set the predictor names and the response column name predictors <- colnames(boston)[1:13] # set the response column to "medv", the median value of owner-occupied homes in $1000's response <- "medv" # convert the chas column to a factor (chas = Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)) boston["chas"] <- as.factor(boston["chas"]) # split into train and validation sets boston.splits <- h2o.splitFrame(data = boston, ratios = .8, seed = 1234) train <- boston.splits[[1]] valid <- boston.splits[[2]] # try using the `quantile_alpha` parameter: # train your model, where you specify distribution = quantile # and the quantile_alpha value boston_gbm <- h2o.gbm(x = predictors, y = response, training_frame = train, validation_frame = valid, distribution = 'quantile', quantile_alpha = .8, seed = 1234) # print the mse for validation set print(h2o.mse(boston_gbm, valid = TRUE)) # grid over `quantile_alpha` parameter # select the values for `quantile_alpha` to grid over hyper_params <- list( quantile_alpha = c(.2, .5, .8) ) # this example uses cartesian grid search because the search space is small # and we want to see the performance of all models. For a larger search space use # random grid search instead: {'strategy': "RandomDiscrete"} # build grid search with previously made GBM and hyperparameters grid <- h2o.grid(x = predictors, y = response, training_frame = train, validation_frame = valid, algorithm = "gbm", grid_id = "boston_grid", distribution = "quantile", hyper_params = hyper_params, seed = 1234) # Sort the grid models by MSE sortedGrid <- h2o.getGrid("boston_grid", sort_by = "mse", decreasing = FALSE) sortedGrid .. code-block:: python import h2o from h2o.estimators.gbm import H2OGradientBoostingEstimator h2o.init() # import the boston dataset: # this dataset looks at features of the boston suburbs and predicts median housing prices # the original dataset can be found at https://archive.ics.uci.edu/ml/datasets/Housing boston = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/gbm_test/BostonHousing.csv") # set the predictor names and the response column name predictors = boston.columns[:-1] # set the response column to "medv", the median value of owner-occupied homes in $1000's response = "medv" # convert the chas column to a factor (chas = Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)) boston['chas'] = boston['chas'].asfactor() # split into train and validation sets train, valid = boston.split_frame(ratios = [.8], seed = 1234) # try using the `quantile_alpha` parameter: # initialize the estimator then train the model where you specify distribution = quantile # and the quantile_alpha value boston_gbm = H2OGradientBoostingEstimator(distribution = "quantile", quantile_alpha = .8, seed = 1234) # then train your model boston_gbm.train(x = predictors, y = response, training_frame = train, validation_frame = valid) # print the MSE for the validation data print(boston_gbm.mse(valid=True)) # Example of values to grid over for `quantile_alpha` # import Grid Search from h2o.grid.grid_search import H2OGridSearch # select the values for `quantile_alpha` to grid over hyper_params = {'quantile_alpha': [.2, .5, .8]} # this example uses cartesian grid search because the search space is small # and we want to see the performance of all models. For a larger search space use # random grid search instead: {'strategy': "RandomDiscrete"} # initialize the GBM estimator boston_gbm_2 = H2OGradientBoostingEstimator(distribution="quantile", seed = 1234, stopping_metric = "mse", stopping_tolerance = 1e-4) # build grid search with previously made GBM and hyper parameters grid = H2OGridSearch(model = boston_gbm_2, hyper_params = hyper_params, search_criteria = {'strategy': "Cartesian"}) # train using the grid grid.train(x = predictors, y = response, training_frame = train, validation_frame = valid) # sort the grid models by decreasing MSE sorted_grid = grid.get_grid(sort_by = 'mse', decreasing = False) print(sorted_grid)