3.20.0.10
  • Welcome to H2O 3
  • Quick Start Videos
  • Cloud Integration
  • Downloading & Installing H2O
  • Starting H2O
  • Getting Data into Your H2O Cluster
  • Data Manipulation
  • Algorithms
    • Common
      • Quantiles
      • Early Stopping
    • Supervised
      • Cox Proportional Hazards (CoxPH)
      • Deep Learning (Neural Networks)
      • Distributed Random Forest (DRF)
      • Generalized Linear Model (GLM)
      • Gradient Boosting Machine (GBM)
      • Naïve Bayes Classifier
      • Stacked Ensembles
      • XGBoost
    • Unsupervised
      • Aggregator
      • Generalized Low Rank Models (GLRM)
      • K-Means Clustering
      • Principal Component Analysis (PCA)
    • Miscellaneous
      • Word2vec
  • Cross-Validation
  • Grid (Hyperparameter) Search
  • Checkpointing Models
  • AutoML: Automatic Machine Learning
  • Saving and Loading a Model
  • Productionizing H2O
  • Using Flow - H2O’s Web UI
  • Downloading Logs
  • H2O Architecture
  • Security
  • FAQ
  • Glossary
  • Migrating to H2O 3
  • Appendix A - Parameters
  • Appendix B - API Reference
H2O
  • Docs »
  • Algorithms
  • View page source

Algorithms¶

This section provides an overview of each algorithm available in H2O. For detailed information about the parameters that can be used for building models, refer to Appendix A - Parameters.

Common¶

  • Quantiles
  • Early Stopping

Supervised¶

  • Cox Proportional Hazards (CoxPH)
  • Deep Learning (Neural Networks)
  • Distributed Random Forest (DRF)
  • Generalized Linear Model (GLM)
  • Gradient Boosting Machine (GBM)
  • Naïve Bayes Classifier
  • Stacked Ensembles
  • XGBoost

Unsupervised¶

  • Aggregator
  • Generalized Low Rank Models (GLRM)
  • K-Means Clustering
  • Principal Component Analysis (PCA)

Miscellaneous¶

  • Word2vec
Next Previous

© Copyright 2016-2018 H2O.ai. Last updated on Oct 16, 2018.

Built with Sphinx using a theme provided by Read the Docs.