For each subset of an H2O data set, apply a user-specified function, then combine the results. This is an experimental feature.
h2o.ddply(X, .variables, FUN, ..., .progress = "none")
X | An H2OFrame object to be processed. |
---|---|
.variables | Variables to split |
FUN | Function to apply to each subset grouping. |
... | Additional arguments passed on to |
.progress | Name of the progress bar to use. #TODO: (Currently unimplemented) |
Returns an H2OFrame object containing the results from the split/apply operation, arranged
ddply
for the plyr library implementation.
# NOT RUN { library(h2o) h2o.init() # Import iris dataset to H2O irisPath <- system.file("extdata", "iris_wheader.csv", package = "h2o") iris.hex <- h2o.uploadFile(path = irisPath, destination_frame = "iris.hex") # Add function taking mean of sepal_len column fun <- function(df) { sum(df[,1], na.rm = TRUE)/nrow(df) } # Apply function to groups by class of flower # uses h2o's ddply, since iris.hex is an H2OFrame object res <- h2o.ddply(iris.hex, "class", fun) head(res) # }