Detect anomalies in an H2O dataset using an H2O deep learning model with auto-encoding.
h2o.anomaly(object, data, per_feature = FALSE)
object | An H2OAutoEncoderModel object that represents the model to be used for anomaly detection. |
---|---|
data | An H2OFrame object. |
per_feature | Whether to return the per-feature squared reconstruction error |
Returns an H2OFrame object containing the reconstruction MSE or the per-feature squared error.
h2o.deeplearning
for making an H2OAutoEncoderModel.
# NOT RUN { library(h2o) h2o.init() prosPath = system.file("extdata", "prostate.csv", package = "h2o") prostate.hex = h2o.importFile(path = prosPath) prostate.dl = h2o.deeplearning(x = 3:9, training_frame = prostate.hex, autoencoder = TRUE, hidden = c(10, 10), epochs = 5) prostate.anon = h2o.anomaly(prostate.dl, prostate.hex) head(prostate.anon) prostate.anon.per.feature = h2o.anomaly(prostate.dl, prostate.hex, per_feature=TRUE) head(prostate.anon.per.feature) # }