#!/usr/bin/env python
# -*- encoding: utf-8 -*-
#
# This file is auto-generated by h2o-3/h2o-bindings/bin/gen_python.py
# Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details)
#
from __future__ import absolute_import, division, print_function, unicode_literals
from h2o.estimators.estimator_base import H2OEstimator
from h2o.exceptions import H2OValueError
from h2o.frame import H2OFrame
from h2o.utils.typechecks import assert_is_type, Enum, numeric
[docs]class H2OWord2vecEstimator(H2OEstimator):
"""
Word2Vec
"""
algo = "word2vec"
def __init__(self, **kwargs):
super(H2OWord2vecEstimator, self).__init__()
self._parms = {}
names_list = {"model_id", "training_frame", "min_word_freq", "word_model", "norm_model", "vec_size",
"window_size", "sent_sample_rate", "init_learning_rate", "epochs", "pre_trained",
"max_runtime_secs", "export_checkpoints_dir"}
if "Lambda" in kwargs: kwargs["lambda_"] = kwargs.pop("Lambda")
for pname, pvalue in kwargs.items():
if pname == 'model_id':
self._id = pvalue
self._parms["model_id"] = pvalue
elif pname == 'pre_trained':
setattr(self, pname, pvalue)
self._determine_vec_size();
setattr(self, 'vec_size', self.vec_size)
elif pname in names_list:
# Using setattr(...) will invoke type-checking of the arguments
setattr(self, pname, pvalue)
else:
raise H2OValueError("Unknown parameter %s = %r" % (pname, pvalue))
@property
def training_frame(self):
"""
Id of the training data frame.
Type: ``H2OFrame``.
"""
return self._parms.get("training_frame")
@training_frame.setter
def training_frame(self, training_frame):
assert_is_type(training_frame, None, H2OFrame)
self._parms["training_frame"] = training_frame
@property
def min_word_freq(self):
"""
This will discard words that appear less than <int> times
Type: ``int`` (default: ``5``).
"""
return self._parms.get("min_word_freq")
@min_word_freq.setter
def min_word_freq(self, min_word_freq):
assert_is_type(min_word_freq, None, int)
self._parms["min_word_freq"] = min_word_freq
@property
def word_model(self):
"""
Use the Skip-Gram model
One of: ``"skip_gram"`` (default: ``"skip_gram"``).
"""
return self._parms.get("word_model")
@word_model.setter
def word_model(self, word_model):
assert_is_type(word_model, None, Enum("skip_gram"))
self._parms["word_model"] = word_model
@property
def norm_model(self):
"""
Use Hierarchical Softmax
One of: ``"hsm"`` (default: ``"hsm"``).
"""
return self._parms.get("norm_model")
@norm_model.setter
def norm_model(self, norm_model):
assert_is_type(norm_model, None, Enum("hsm"))
self._parms["norm_model"] = norm_model
@property
def vec_size(self):
"""
Set size of word vectors
Type: ``int`` (default: ``100``).
"""
return self._parms.get("vec_size")
@vec_size.setter
def vec_size(self, vec_size):
assert_is_type(vec_size, None, int)
self._parms["vec_size"] = vec_size
@property
def window_size(self):
"""
Set max skip length between words
Type: ``int`` (default: ``5``).
"""
return self._parms.get("window_size")
@window_size.setter
def window_size(self, window_size):
assert_is_type(window_size, None, int)
self._parms["window_size"] = window_size
@property
def sent_sample_rate(self):
"""
Set threshold for occurrence of words. Those that appear with higher frequency in the training data
will be randomly down-sampled; useful range is (0, 1e-5)
Type: ``float`` (default: ``0.001``).
"""
return self._parms.get("sent_sample_rate")
@sent_sample_rate.setter
def sent_sample_rate(self, sent_sample_rate):
assert_is_type(sent_sample_rate, None, float)
self._parms["sent_sample_rate"] = sent_sample_rate
@property
def init_learning_rate(self):
"""
Set the starting learning rate
Type: ``float`` (default: ``0.025``).
"""
return self._parms.get("init_learning_rate")
@init_learning_rate.setter
def init_learning_rate(self, init_learning_rate):
assert_is_type(init_learning_rate, None, float)
self._parms["init_learning_rate"] = init_learning_rate
@property
def epochs(self):
"""
Number of training iterations to run
Type: ``int`` (default: ``5``).
"""
return self._parms.get("epochs")
@epochs.setter
def epochs(self, epochs):
assert_is_type(epochs, None, int)
self._parms["epochs"] = epochs
@property
def pre_trained(self):
"""
Id of a data frame that contains a pre-trained (external) word2vec model
Type: ``H2OFrame``.
"""
return self._parms.get("pre_trained")
@pre_trained.setter
def pre_trained(self, pre_trained):
assert_is_type(pre_trained, None, H2OFrame)
self._parms["pre_trained"] = pre_trained
@property
def max_runtime_secs(self):
"""
Maximum allowed runtime in seconds for model training. Use 0 to disable.
Type: ``float`` (default: ``0``).
"""
return self._parms.get("max_runtime_secs")
@max_runtime_secs.setter
def max_runtime_secs(self, max_runtime_secs):
assert_is_type(max_runtime_secs, None, numeric)
self._parms["max_runtime_secs"] = max_runtime_secs
@property
def export_checkpoints_dir(self):
"""
Automatically export generated models to this directory.
Type: ``str``.
"""
return self._parms.get("export_checkpoints_dir")
@export_checkpoints_dir.setter
def export_checkpoints_dir(self, export_checkpoints_dir):
assert_is_type(export_checkpoints_dir, None, str)
self._parms["export_checkpoints_dir"] = export_checkpoints_dir
def _requires_training_frame(self):
"""
Determines if Word2Vec algorithm requires a training frame.
:return: False.
"""
return False
[docs] @staticmethod
def from_external(external=H2OFrame):
"""
Creates new H2OWord2vecEstimator based on an external model.
:param external: H2OFrame with an external model
:return: H2OWord2vecEstimator instance representing the external model
"""
w2v_model = H2OWord2vecEstimator(pre_trained=external)
w2v_model.train()
return w2v_model
def _determine_vec_size(self):
"""
Determines vec_size for a pre-trained model after basic model verification.
"""
first_column = self.pre_trained.types[self.pre_trained.columns[0]]
if first_column != 'string':
raise H2OValueError("First column of given pre_trained model %s is required to be a String",
self.pre_trained.frame_id)
if list(self.pre_trained.types.values()).count('string') > 1:
raise H2OValueError("There are multiple columns in given pre_trained model %s with a String type.",
self.pre_trained.frame_id)
self.vec_size = self.pre_trained.dim[1] - 1;