Source code for h2o.estimators.generic

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
#
# This file is auto-generated by h2o-3/h2o-bindings/bin/gen_python.py
# Copyright 2016 H2O.ai;  Apache License Version 2.0 (see LICENSE for details)
#
from __future__ import absolute_import, division, print_function, unicode_literals

from h2o.estimators.estimator_base import H2OEstimator
from h2o.exceptions import H2OValueError
from h2o.frame import H2OFrame
from h2o.utils.typechecks import assert_is_type, Enum, numeric


[docs]class H2OGenericEstimator(H2OEstimator): """ Import MOJO Model """ algo = "generic" param_names = {"model_id", "model_key", "path"} def __init__(self, **kwargs): super(H2OGenericEstimator, self).__init__() self._parms = {} if all(kwargs.get(name, None) is None for name in ["model_key", "path"]): raise H2OValueError('At least one of ["model_key", "path"] is required.') for pname, pvalue in kwargs.items(): if pname == 'model_id': self._id = pvalue self._parms["model_id"] = pvalue elif pname in self.param_names: # Using setattr(...) will invoke type-checking of the arguments setattr(self, pname, pvalue) else: raise H2OValueError("Unknown parameter %s = %r" % (pname, pvalue)) @property def model_key(self): """ Key to the self-contained model archive already uploaded to H2O. Type: ``H2OFrame``. """ return self._parms.get("model_key") @model_key.setter def model_key(self, model_key): self._parms["model_key"] = H2OFrame._validate(model_key, 'model_key') @property def path(self): """ Path to file with self-contained model archive. Type: ``str``. """ return self._parms.get("path") @path.setter def path(self, path): assert_is_type(path, None, str) self._parms["path"] = path def _requires_training_frame(self): """ Determines if Generic model requires a training frame. :return: False. """ return False
[docs] @staticmethod def from_file(file=str): """ Creates new Generic model by loading existing embedded model into library, e.g. from H2O MOJO. The imported model must be supported by H2O. :param file: A string containing path to the file to create the model from :return: H2OGenericEstimator instance representing the generic model """ model = H2OGenericEstimator(path = file) model.train() return model