``interactions``
----------------

- Available in: GLM, CoxPH
- Hyperparameter: no

Description
~~~~~~~~~~~

By default, interactions between predictor columns are expanded and computed on the fly as GLM iterates over dataset. The ``interactions`` option allows you to enter a list of predictor column indices that should interact. 

Note that adding a list of interactions to a model changes the interpretation of all of the coefficients. For example, a typical predictor has the form ‘response ~ terms’ where ‘response’ is the (numeric) response vector, and ‘terms’ is a series of terms that specify a linear predictor for ‘response’. For ‘binomial’ and ‘quasibinomial’ families in GLM, the response can also be specified as a ‘factor’ (when the first level denotes failure and all other levels denote success) or as a two-column matrix with the columns giving the numbers of successes and failures. 

Interactions can be specified between two categorical columns, between two numeric columns, or between a mix of categorical and numerical columns. When entered, all pairwise combinations of predictor column indices will be computed for that list. 

Related Parameters
~~~~~~~~~~~~~~~~~~

- None

Examples
~~~~~~~~

.. example-code::
   .. code-block:: r

	library(h2o)
	h2o.init()
	# import the boston dataset:
	# this dataset looks at features of the boston suburbs and predicts median housing prices
	# the original dataset can be found at https://archive.ics.uci.edu/ml/datasets/Housing
	boston <- h2o.importFile("https://s3.amazonaws.com/h2o-public-test-data/smalldata/gbm_test/BostonHousing.csv")

	# set the predictor names and the response column name
	predictors <- colnames(boston)[1:13]
	# set the response column to "medv", the median value of owner-occupied homes in $1000's
	response <- "medv"

	# convert the chas column to a factor (chas = Charles River dummy variable (= 1 if tract bounds river; 0 otherwise))
	boston["chas"] <- as.factor(boston["chas"])

	# split into train and validation sets
	boston.splits <- h2o.splitFrame(data =  boston, ratios = .8)
	train <- boston.splits[[1]]
	valid <- boston.splits[[2]]

	# try using the `interactions` parameter:
	# add the interaction terms between 'crim' and 'dis' (per capita crime rate by town and 
	# the weighted distances to five Boston employment centres)
	# initialize the estimator then train the model
	interactions_list = c('crim', 'dis')
	boston_glm <- h2o.glm(x = predictors, y = response, training_frame = train,
	                      interactions = interactions_list,
	                      validation_frame = valid)

	# print the mse for validation set
	print(h2o.mse(boston_glm, valid=TRUE))

   .. code-block:: python

	import h2o
	from h2o.estimators.glm import H2OGeneralizedLinearEstimator
	h2o.init()

	# import the boston dataset:
	# this dataset looks at features of the boston suburbs and predicts median housing prices
	# the original dataset can be found at https://archive.ics.uci.edu/ml/datasets/Housing
	boston = h2o.import_file("https://s3.amazonaws.com/h2o-public-test-data/smalldata/gbm_test/BostonHousing.csv")

	# set the predictor names and the response column name
	predictors = boston.columns[:-1]
	# set the response column to "medv", the median value of owner-occupied homes in $1000's
	response = "medv"

	# convert the chas column to a factor (chas = Charles River dummy variable (= 1 if tract bounds river; 0 otherwise))
	boston['chas'] = boston['chas'].asfactor()

	# split into train and validation sets
	train, valid = boston.split_frame(ratios = [.8])

	# take a look at the boston columns:
	print(boston.columns)

	# try using the `interactions` parameter:
	# add the interaction terms between 'crim' and 'dis' (per capita crime rate by town and 
	# the weighted distances to five Boston employment centres)
	# initialize the estimator then train the model
	interactions_list = ['crim', 'dis']
	boston_glm = H2OGeneralizedLinearEstimator(interactions = interactions_list)
	boston_glm.train(x = predictors, y = response, training_frame = train, validation_frame = valid)

	# print the mse for the validation data
	print(boston_glm.mse(valid=True))