#!/usr/bin/env python
# -*- encoding: utf-8 -*-
#
# This file is auto-generated by h2o-3/h2o-bindings/bin/gen_python.py
# Copyright 2016 H2O.ai; Apache License Version 2.0 (see LICENSE for details)
#
from __future__ import absolute_import, division, print_function, unicode_literals
from h2o.estimators.estimator_base import H2OEstimator
from h2o.exceptions import H2OValueError
from h2o.frame import H2OFrame
from h2o.utils.typechecks import assert_is_type, Enum, numeric
[docs]class H2OCoxProportionalHazardsEstimator(H2OEstimator):
"""
Cox Proportional Hazards
Trains a Cox Proportional Hazards Model (CoxPH) on an H2O dataset.
"""
algo = "coxph"
param_names = {"model_id", "training_frame", "start_column", "stop_column", "response_column", "ignored_columns",
"weights_column", "offset_column", "stratify_by", "ties", "init", "lre_min", "max_iterations",
"interactions", "interaction_pairs", "interactions_only", "use_all_factor_levels",
"export_checkpoints_dir"}
def __init__(self, **kwargs):
super(H2OCoxProportionalHazardsEstimator, self).__init__()
self._parms = {}
for pname, pvalue in kwargs.items():
if pname == 'model_id':
self._id = pvalue
self._parms["model_id"] = pvalue
elif pname in self.param_names:
# Using setattr(...) will invoke type-checking of the arguments
setattr(self, pname, pvalue)
else:
raise H2OValueError("Unknown parameter %s = %r" % (pname, pvalue))
@property
def training_frame(self):
"""
Id of the training data frame.
Type: ``H2OFrame``.
"""
return self._parms.get("training_frame")
@training_frame.setter
def training_frame(self, training_frame):
self._parms["training_frame"] = H2OFrame._validate(training_frame, 'training_frame')
@property
def start_column(self):
"""
Start Time Column.
Type: ``str``.
"""
return self._parms.get("start_column")
@start_column.setter
def start_column(self, start_column):
assert_is_type(start_column, None, str)
self._parms["start_column"] = start_column
@property
def stop_column(self):
"""
Stop Time Column.
Type: ``str``.
"""
return self._parms.get("stop_column")
@stop_column.setter
def stop_column(self, stop_column):
assert_is_type(stop_column, None, str)
self._parms["stop_column"] = stop_column
@property
def response_column(self):
"""
Response variable column.
Type: ``str``.
"""
return self._parms.get("response_column")
@response_column.setter
def response_column(self, response_column):
assert_is_type(response_column, None, str)
self._parms["response_column"] = response_column
@property
def ignored_columns(self):
"""
Names of columns to ignore for training.
Type: ``List[str]``.
"""
return self._parms.get("ignored_columns")
@ignored_columns.setter
def ignored_columns(self, ignored_columns):
assert_is_type(ignored_columns, None, [str])
self._parms["ignored_columns"] = ignored_columns
@property
def weights_column(self):
"""
Column with observation weights. Giving some observation a weight of zero is equivalent to excluding it from the
dataset; giving an observation a relative weight of 2 is equivalent to repeating that row twice. Negative
weights are not allowed. Note: Weights are per-row observation weights and do not increase the size of the data
frame. This is typically the number of times a row is repeated, but non-integer values are supported as well.
During training, rows with higher weights matter more, due to the larger loss function pre-factor.
Type: ``str``.
"""
return self._parms.get("weights_column")
@weights_column.setter
def weights_column(self, weights_column):
assert_is_type(weights_column, None, str)
self._parms["weights_column"] = weights_column
@property
def offset_column(self):
"""
Offset column. This will be added to the combination of columns before applying the link function.
Type: ``str``.
"""
return self._parms.get("offset_column")
@offset_column.setter
def offset_column(self, offset_column):
assert_is_type(offset_column, None, str)
self._parms["offset_column"] = offset_column
@property
def stratify_by(self):
"""
List of columns to use for stratification.
Type: ``List[str]``.
"""
return self._parms.get("stratify_by")
@stratify_by.setter
def stratify_by(self, stratify_by):
assert_is_type(stratify_by, None, [str])
self._parms["stratify_by"] = stratify_by
@property
def ties(self):
"""
Method for Handling Ties.
One of: ``"efron"``, ``"breslow"`` (default: ``"efron"``).
"""
return self._parms.get("ties")
@ties.setter
def ties(self, ties):
assert_is_type(ties, None, Enum("efron", "breslow"))
self._parms["ties"] = ties
@property
def init(self):
"""
Coefficient starting value.
Type: ``float`` (default: ``0``).
"""
return self._parms.get("init")
@init.setter
def init(self, init):
assert_is_type(init, None, numeric)
self._parms["init"] = init
@property
def lre_min(self):
"""
Minimum log-relative error.
Type: ``float`` (default: ``9``).
"""
return self._parms.get("lre_min")
@lre_min.setter
def lre_min(self, lre_min):
assert_is_type(lre_min, None, numeric)
self._parms["lre_min"] = lre_min
@property
def max_iterations(self):
"""
Maximum number of iterations.
Type: ``int`` (default: ``20``).
"""
return self._parms.get("max_iterations")
@max_iterations.setter
def max_iterations(self, max_iterations):
assert_is_type(max_iterations, None, int)
self._parms["max_iterations"] = max_iterations
@property
def interactions(self):
"""
A list of predictor column indices to interact. All pairwise combinations will be computed for the list.
Type: ``List[str]``.
"""
return self._parms.get("interactions")
@interactions.setter
def interactions(self, interactions):
assert_is_type(interactions, None, [str])
self._parms["interactions"] = interactions
@property
def interaction_pairs(self):
"""
A list of pairwise (first order) column interactions.
Type: ``List[tuple]``.
"""
return self._parms.get("interaction_pairs")
@interaction_pairs.setter
def interaction_pairs(self, interaction_pairs):
assert_is_type(interaction_pairs, None, [tuple])
self._parms["interaction_pairs"] = interaction_pairs
@property
def interactions_only(self):
"""
A list of columns that should only be used to create interactions but should not itself participate in model
training.
Type: ``List[str]``.
"""
return self._parms.get("interactions_only")
@interactions_only.setter
def interactions_only(self, interactions_only):
assert_is_type(interactions_only, None, [str])
self._parms["interactions_only"] = interactions_only
@property
def use_all_factor_levels(self):
"""
(Internal. For development only!) Indicates whether to use all factor levels.
Type: ``bool`` (default: ``False``).
"""
return self._parms.get("use_all_factor_levels")
@use_all_factor_levels.setter
def use_all_factor_levels(self, use_all_factor_levels):
assert_is_type(use_all_factor_levels, None, bool)
self._parms["use_all_factor_levels"] = use_all_factor_levels
@property
def export_checkpoints_dir(self):
"""
Automatically export generated models to this directory.
Type: ``str``.
"""
return self._parms.get("export_checkpoints_dir")
@export_checkpoints_dir.setter
def export_checkpoints_dir(self, export_checkpoints_dir):
assert_is_type(export_checkpoints_dir, None, str)
self._parms["export_checkpoints_dir"] = export_checkpoints_dir
def _additional_used_columns(self, parms):
"""
:return: Start and stop column if specified.
"""
result = []
for col in ["start_column", "stop_column"]:
if col in parms and parms[col] is not None:
result.append(parms[col])
return result