export_checkpoints_dir
¶
- Available in: GBM, DRF, Deep Learning, GLM, PCA, GLRM, Naïve-Bayes, K-Means, Word2Vec, Stacked Ensembles, XGBoost, Aggregator, CoxPH, Isolation Forest, AutoML
- Hyperparameter: no
Description¶
This option is used to automatically export generated models to a specified directory.
Example¶
- r
- python
library(h2o)
h2o.init()
# import the airlines dataset
airlines = h2o.importFile("http://s3.amazonaws.com/h2o-public-test-data/smalldata/airlines/allyears2k_headers.zip", destination_frame="air.hex")
# set the predictors and response
predictors <- c("DayofMonth", "DayOfWeek")
response <- "IsDepDelayed"
# set hyperparameters to build one model with 5 trees and one with 10 trees
hyper_parameters <- list(ntrees = c(5,10))
# specify the export checkpoints directory
checkpoints_dir <- tempfile()
# perform grid search using GBM
gbm_grid <- h2o.grid("gbm",
x=predictors,
y=response,
training_frame=airlines,
distribution="bernoulli",
stopping_rounds=3,
stopping_metric="AUTO",
stopping_tolerance=1e-2,
learn_rate=0.1,
max_depth=3,
hyper_params=hyper_parameters,
export_checkpoints_dir=checkpoints_dir,
seed=1234)
# retrieve the number of files in the exported checkpoints directory
num_files <- length(checkpoints_dir)
num_files
[1] 1