exclude_algos
¶
- Available in: AutoML
- Hyperparameter: no
Description¶
This option allows you to specify a list of algorithms that should not be included in an AutoML run during the model-building phase. This option defaults to None/Null, which means that all algorithms are included. However, if the include_algos
option is used, then the AutoML run will include only those specified algorithms. Note that these two options cannot both be specified.
The algorithms that can be specified include:
- DRF (including both the Random Forest and Extremely Randomized Trees (XRT) models)
- GLM
- XGBoost (XGBoost GBM)
- GBM (H2O GBM)
- DeepLearning (Fully-connected multi-layer artificial neural network)
- StackedEnsemble
Example¶
- r
- python
library(h2o)
h2o.init()
# Import a sample binary outcome training set into H2O
train <- h2o.importFile("https://s3.amazonaws.com/erin-data/higgs/higgs_train_10k.csv")
# Identify predictors and response
x <- setdiff(names(train), y)
y <- "response"
# For binary classification, response should be a factor
train[,y] <- as.factor(train[,y])
# Train AutoML, omitting DeepLearning and DRF
aml <- h2o.automl(x = x, y = y,
training_frame = train,
max_runtime_secs = 30,
sort_metric = "logloss",
exclude_algos = c("DeepLearning", "DRF"))
# View the AutoML Leaderboard
lb <- aml@leaderboard
lb
model_id auc logloss
1 StackedEnsemble_AllModels_AutoML_20190321_095825 0.7866967 0.5550255
2 StackedEnsemble_BestOfFamily_AutoML_20190321_095825 0.7848515 0.5569458
3 XGBoost_1_AutoML_20190321_095825 0.7846668 0.5578654
4 XGBoost_2_AutoML_20190321_095825 0.7820392 0.5586830
5 GLM_grid_1_AutoML_20190321_095825_model_1 0.6826481 0.6385205
mean_per_class_error rmse mse
1 0.3309041 0.4338530 0.1882284
2 0.3231440 0.4346720 0.1889397
3 0.3324049 0.4349659 0.1891953
4 0.3269806 0.4356756 0.1898132
5 0.3972341 0.4726827 0.2234290
[5 rows x 6 columns]