include_algos

  • Available in: AutoML
  • Hyperparameter: no

Description

This option allows you to specify a list of algorithms to include in an AutoML run during the model-building phase. This option defaults to None/Null, which means that all algorithms are included unless any algorithms are specified in the exclude_algos option. Note that these two options cannot both be specified.

The algorithms that can be specified include:

  • DRF (including both the Random Forest and Extremely Randomized Trees (XRT) models)
  • GLM
  • XGBoost (XGBoost GBM)
  • GBM (H2O GBM)
  • DeepLearning (Fully-connected multi-layer artificial neural network)
  • StackedEnsemble

Example

  • r
  • python
library(h2o)
h2o.init()

# Import a sample binary outcome training set into H2O
train <- h2o.importFile("https://s3.amazonaws.com/erin-data/higgs/higgs_train_10k.csv")

# Identify predictors and response
x <- setdiff(names(train), y)
y <- "response"

# For binary classification, response should be a factor
train[,y] <- as.factor(train[,y])

# Train AutoML using only GLM, DeepLearning, and DRF
aml <- h2o.automl(x = x, y = y,
                  training_frame = train,
                  max_runtime_secs = 30,
                  sort_metric = "logloss",
                  include_algos = c("GLM", "DeepLearning", "DRF"))

# View the AutoML Leaderboard
lb <- aml@leaderboard
lb

                                            model_id       auc   logloss
1                       XRT_1_AutoML_20190321_094944 0.7402090 0.6051397
2                       DRF_1_AutoML_20190321_094944 0.7431221 0.6057202
3              DeepLearning_1_AutoML_20190321_094944 0.6994255 0.6309644
4          GLM_grid_1_AutoML_20190321_094944_model_1 0.6826481 0.6385205
5 DeepLearning_grid_1_AutoML_20190321_094944_model_1 0.6707953 0.7042976
  mean_per_class_error      rmse       mse
1            0.3545519 0.4539312 0.2060535
2            0.3683363 0.4527405 0.2049739
3            0.3892368 0.4687153 0.2196940
4            0.3972341 0.4726827 0.2234290
5            0.4385448 0.4911634 0.2412415

[5 rows x 6 columns]