stratify_by
¶
- Available in: CoxPH
- Hyperparameter: no
Description¶
In a CoxPH model, stratification is useful as a diagnostic for checking the proportional hazards assumption, as it allows for as many different hazard functions as there are strata. For example, when attempting to predict X, you can include a secondary categorical predictor, Z, that can be adjusted for when making inferences about X’s relationship to the time-to-event endpoint.
Use the `stratify_by
parameter to specify a list of columns to use for stratification when building a CoxPH model.
Example¶
library(h2o)
h2o.init()
# import the heart dataset
heart <- h2o.importFile("http://s3.amazonaws.com/h2o-public-test-data/smalldata/coxph_test/heart.csv")
# set the predictor and response column
x <- "age"
y <- "event"
# set the start and stop columns
start <- "start"
stop <- "stop"
# convert the age column to a factor
heart["age"] <- as.factor(heart["age"])
# train your model
coxph.h2o <- h2o.coxph(x=c("year", x),
event_column=y,
start_column=start,
stop_column=stop,
stratify_by=x,
training_frame=heart)
# view the model details
coxph.h2o
Model Details:
==============
H2OCoxPHModel: coxph
Model ID: CoxPH_model_R_1570209287520_5
Call:
Surv(start, stop, event) ~ year + strata(age)
coef exp(coef) se(coef) z p
year 4.734 113.717 8973.421 0.001 1
Likelihood ratio test=1.39 on 1 df, p=0.239
n= 172, number of events= 75